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1. Introduction

1.1. Motivation. Let g be a semisimple Lie algebra over C. The finite-dimensional representation theory of
g is well-studied; the category of representations is semisimple, and irreducible representations are classified
by their positive integral highest weights. Further, the Weyl character formula gives an explicit expression
for the characters of these irreducibles.

A natural next step is then to expand the class of representations under consideration. We would like such
a class to contain the Verma modules Mλ, which are perhaps the prototypical example of highest weight
modules. It turns out that a nice category O of representations exists which contains the Verma modules
and all extensions and quotients of them. In particular, the category O is Artinian, and we may again
parametrize the simple objects Lλ of O by their highest weight. We would like then to understand:

• the decomposition of [Mλ] into [Lµ] in the Grothendieck group of O, and
• the characters of the irreducible representations Lλ.
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The characters of the Verma modules are easily determined, so the second goal follows from the first, which
is known as the Kazhdan-Lusztig conjectures. These two goals were achieved in the early 1980’s, and the
goal of this paper is to give an expository account of the relevance of perverse sheaves in their realization.

The solution proceeds by using geometric methods which successively transformed the original algebraic
problem into different contexts. We summarize these steps in the following diagram, where the arrows mean
that an equivalence of categories exists under some appropriate conditions.

Category O Beilinson-Bernstein→ Regular holonomic D-modules
Riemann-Hilbert→ Perverse sheaves .

After translation into the context of perverse sheaves, the problem becomes to understand the composition
series of some intersection cohomology sheaves on flag varieties. Applying the Decomposition Theorem to
desingularizations of the Schubert varieties allows us to compute stalks of these sheaves and solve the original
problem.

1.2. Organization and references. Let us now discuss the specific structure of this paper. In Section 2,
we introduce the geometric backdrop for the paper. The main goals are to introduce Schubert varieties and
to discuss the decomposition of category O into blocks via the Harish-Chandra isomorphism. In Section 3,
we define and discuss the Beilinson-Bernstein and Riemann-Hilbert correspondences, which allow us to pass
from representations of a Lie algebra to perverse sheaves. The main objective is understand the image of
the simple modules and the Verma modules under these correspondences. In Section 4, our main work takes
place; we formulate the Kazhdan-Lusztig conjectures and proof them modulo the major work of Section
3. The key step will be the computation of the stalks of intersection cohomology sheaves on Schubert
varieties. This will involve an application of the Decomposition Theorem to the Bott-Samelson resolution of
the Schubert varieties.

The material we present here builds on a large body of mathematics and is drawn from a number of
different sources. As the list of necessary inputs for our goal is quite large, we have chosen to emphasize
those aspects which involve perverse sheaves and the Kazhdan-Lusztig result directly. As such, we have
omitted many proofs which do not pertain directly to these topics, and we will assume knowledge of the
theory of D-modules and the geometry of the flag variety of a semisimple algebraic group. However, we have
attempted to include sufficient background material to connect the final computation using perverse sheaves
on the flag variety coherently to the entire story.

We now detail the sources we used. Throughout the paper, we have made extensive reference to [HTT08],
which gives quite a comprehensive exposition. For the theory of D-modules and the Riemann-Hilbert cor-
respondence, we have also consulted [Ber83]. For our main work, we followed primarily [Ric10a], [Ric10b],
and [Spr81].

1.3. Conventions and notation. We collect here some notations which we will use throughout this essay.
Unless explicitly specified otherwise, when we write functors f∗, f

∗, f!, f
!, we will always mean the derived

versions. We will always work over the field C of complex numbers. By RHom and Hom, we mean the
derived and underived sheaf Hom’s.

2. The geometric setting

In this section, we establish the geometric setting for the rest of this essay will take place. We begin by
describing the flag and Schubert varieties associated to a semisimple algebraic group G and the corresponding
Lie algebra g. We then define the category O of representations of g and describe its decomposition into
blocks via the Harish-Chandra isomorphism.

2.1. Preliminaries on semisimple algebraic groups. Let G be a connected, simply connected, semisim-
ple algebraic group over C. Pick a Borel subgroup B of G and a maximal torus T ⊂ B. Let U be a maximal
unipotent subgroup of B, and recall that T ' B/U . Let Φ(G,T ) = (X∗, R,X∗, R

∨) be the root datum
associated to G. For λ ∈ X∗, denote by eλ the corresponding character eλ : T → Gm. Our choice of B
defines a choice of positive roots R+ ⊂ R. Let the corresponding sets of simple roots be {α1, . . . , αn}, and
let ρ = 1

2

∑
α∈R+ α be half the sum of the positive roots, which is also the longest positive root.

Let W = N(T )/T be the Weyl group of G, and let si be the simple reflection corresponding to αi. For
w ∈W , let `(w) denote its length, which is the length of the shortest reduced decomposition for w. Denote
by w0 the longest element in W .
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2.2. Flag varieties, the Bruhat decomposition and Schubert varieties. We are now ready to intro-
duce our basic geometric setting, the flag variety X = G/B. For any Borel subgroup B of G, let X = G/B
be the corresponding flag variety of G, interpreted as a quotient under the action of B by right translation.
We recall the following characterization of X which is independent of choice of B.

Proposition 2.1. The flag variety X = G/B is projective and its k-points are given by

X(k) = {Borel subgroups of G}.

Recall now the Bruhat decomposition of G, the properties of which we summarize below.

Proposition 2.2 ([Spr98, Lemmas 8.3.6 and 8.3.7, Theorem 8.3.8]). We have the following:

(i) for w̃ ∈ N(T ) a representative of w ∈W , the double coset Bw̃B depends only on w;
(ii) we have an isomorphism A`(w) ×B → BwB;
(iii) for si ∈W a simple reflection, we have

(BsiB) · (BwB) =

{
BsiwB `(siw) > `(w)

(BsiwB) ∪ (BwB) `(siw) < `(w);

(iv) there is a decomposition

G =
⋃
w∈W

BwB

of G into the disjoint union of double cosets under the left and right B-actions.

The double cosets BwB are called Bruhat cells and are locally closed. This decomposition may be
extended to the flag variety X. For each w ∈W , let the Schubert cell Xo

w = BwB/B be the quotient of the
corresponding Bruhat cell corresponding to w. Then, the Schubert variety Xw corresponding to w is defined
to be its closure Xw = X

o

w. For u, v ∈W , write u ≤ v in the Bruhat-Chevalley order if it is possible to form
a reduced decomposition of u by deleting some simple reflections from a reduced decomposition of v. Then,
Xw admits the following decomposition.

Proposition 2.3 ([Spr98, Corollary 8.5.5]). For w ∈W , we have

Xw =
⋃
v≤w

Xo
v .

For the longest element w0 of W , we see that Xw0
= X, as a reduced decomposition of any w ∈W occurs

as a subword of the reduced decomposition of w0. Therefore, the Schubert varieties provide a stratification
of the flag variety X with affine open strata (since Xo

w = BwB/B ' A`(w)).

2.3. The Lie algebra of a semisimple algebraic group. Let g be the Lie algebra of G, and let h ⊂ g
and b ⊂ g denote the Cartan and Borel subalgebras corresponding to T and B, respectively. Let n = [b, b]
so that h ' b/n. Let b− be the opposite Borel subalgebra and set n− = [b−, b−] so that g = n− ⊕ h⊕ n. We
can make these constructions for all points x ∈ X under the correspondence between points of X and Borel
subgroups of G; for any such x, we will denote by bx, b

−
x , nx, n

−
x the subalgebras corresponding to the Borel

subgroup of x in the sense of Corollary 2.1. Let U(g) denote the universal enveloping algebra of g.
Fix now a choice of Borel subalgebra b corresponding to a choice of Borel subgroup B. For a weight λ,

denote by

Mλ := U(g) ⊗
U(b)

kλ

the Verma module of highest weight λ.1 It is known that Mλ has a unique simple quotient, which we denote
by Lλ. A basic problem in the study of g-representations is to find the multiplicities of the Lλ in the
Jordan-Holder series of Mλ.

1This construction depends crucially on our choice of Borel b.
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2.4. Harish-Chandra isomorphism. We now describe in some detail the Harish-Chandra isomorphism,
which characterizes the action of the center Z(g) of U(g) on a representation of g. By Schur’s lemma, the
action of Z(g) on any finite-dimensional irreducible U(g)-module factors through k, meaning that Z(g) acts
via a map of k-algebras χ : Z(g)→ k, which we call a central character. For any central character χ, define

U(g)χ = U(g)/U(g) · kerχ

to be the quotient of U(g) by the (two-sided) ideal generated by kerχ. Note that U(g)χ-modules are simply
U(g)-modules where Z(g) acts by χ.

We now classify the central characters χ by relating them to characters λ ∈ h∗. By the PBW Theorem,
given a choice of Cartan and Borel subalgebras h ⊂ b, U(g) splits as a direct sum

(1) U(g) = U(h)⊕ (n− · U(g) + U(g) · n),

where we note that any pure tensor in U(n−) ⊗ U(h) ⊗ U(n) which does not lie in U(h) lies in at least one
of n− · U(g) or U(g) · n. Let the map

ψb : U(g)→ U(h)

to be the projection onto U(h) under this direct sum. We call the restriction of ψb to Z(g) the Harish-Chandra
homomorphism relative to b.2 One may check that this map is a map of algebras.

Viewing Sym(h) as the space of polynomial functions on h∗, we may interpret ψb as a map

(2) h∗ → MaxSpec(Z(g)),

where the central characters χ are in bijection with MaxSpec(Z(g)). For λ ∈ h∗, denote by χb
λ the central

character corresponding to λ relative to b. We may immediately understand the following important concrete
example of the action of Z(g) through a central character.

Corollary 2.4. For any weight λ ∈ h∗, Z(g) acts via χb
λ on the Verma module Mb

λ .

Thus far, we have considered what we call the Harish-Chandra homomorphism relative to b, a map
ψb : Z(g) → Sym(h) which may (and does) depend on the embedding h ⊂ b ⊂ g we chose when applying
the PBW decomposition. As we have hinted in our nomenclature thus far, it is possible to modify the
construction of ψb to obtain a map ψ : Z(g)→ U(h) that is independent of the choice of Cartan subalgebra.
Indeed, define the map ψ, which we will call the Harish-Chandra homomorphism, to be the composition

Z(g)
ψb→ U(h)

ξ 7→ξ−ρb(ξ)→ U(h),

where the map U(h) → U(h) is the one induced by mapping h → U(h) via ξ 7→ ξ − ρb(ξ). Here, we
write ρb for the longest positive root relative to b to emphasize that the choice of ρb ∈ g depends on the
choice of h ⊂ b ⊂ g. We see that ψ then admits the following nice characterization, which is known as the
Harish-Chandra isomorphism.

Theorem 2.5 ([Dix77, Theorem 7.4.5]). The map ψ is an isomorphism Z(g) → Sym(h)W which is inde-
pendent of the choice of h ⊂ b ⊂ g.

Notice that ψ gives rise to a different map

(3) h∗ → MaxSpec(Z(g)).

For λ ∈ h∗, denote now by χ′λ the central character corresponding to λ. We then have the following charac-
terization of the space of central characters, which follows formally from the Harish-Chandra isomorphism.

Corollary 2.6. We have the following:

(i) every central character χ′ lies in the image of the map (3), and
(ii) χ′λ = χ′µ if and only if there is some w ∈W such that λ = w(µ).

Translating Corollary 2.6 into our original situation of a fixed chosen Borel subalgebra b yields the fol-
lowing. Define the dotted action of W on h∗ by

w · λ = w(λ+ ρb)− ρb
for any λ ∈ h∗. Then, χb

λ = χb
µ if and only if λ and µ are in the same W -orbit under the dotted action.

2While the definition of ψb depends on the choice of both h and b, we write ψb instead of ψh,b because the latter is somewhat

cumbersome.
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Remark. For the remainder of this paper, we will work with respect to a fixed Borel subalgebra b. For
notational convenience, we will write χλ instead of χb

λ. By this, we will always mean the map of (2).

2.5. Category O. While finite-dimensional g-representations are well-understood classically, the category
of all g-representations is quite large, meaning that an analogous treatment is unlikely. Instead, we choose
to study the following full subcategory.

Definition 2.7. Let g be a semisimple Lie algebra. The category O of g-representations is the full subcate-
gory of representations V such that

(i) n acts locally finitely on V ,
(ii) h acts locally finitely and semisimply on V , and
(iii) V is finitely generated over g.

Evidently, all finite dimensional modules lie in this category O. By construction, it also contains all Verma
modules. In fact, it is known that the objects of category O are exactly quotients of finite extensions of
Verma modules. In particular, this means that the Lλ parametrize the simple objects in category O.

Now, for any representation V of g lying in category O, the Harish-Chandra homomorphism allows us to
decompose V as a direct sum

V =
⊕

χ∈MaxSpec(Z(g))

Vχ

of submodules upon which Z(g) acts by central character χ. If we define Oχ to be the full subcategory of O
on which Z(g) acts by χ, then this decomposition implies that

(4) O '
⊕

χ∈MaxSpec(Z(g))

Oχ.

The Oχ are called the blocks of category O.

Example 2.8. Recall by Corollary 2.4 that Z(g) acts by χλ on Mλ and hence also on Lλ, meaning that Mλ

and Lλ lie in Oχλ .

By (4), Lν can occur in the Jordan-Holder series of Mλ if and only if χν = χλ. Therefore, to study these
Jordan-Holder series, it suffices for us to restrict our attention to a single block Oχ at a time. By Corollary
2.6, χν = χλ if and only λ and ν lie in the same orbit under the dotted action of W . In particular, notice
that the simple objects of O−ρ take the form L−wρ−ρ for w ∈W .

Remark. In this paper, in order to avoid dealing with twisted D-modules under the Beilinson-Bernstein
correspondence, we will restrict ourselves to the analysis of the block O−ρ, meaning that we will only consider
the simple objects L−wρ−ρ for w ∈ W . However, similar techniques will provide analogous results for the
other blocks.

3. From g-modules to D-modules to perverse sheaves

In this section we describe two successive equivalences of categories which allow us to pass from repre-
sentations of g to perverse sheaves. The first, the Beilinson-Bernstein localization theorem, associates to
each g-module a corresponding D-module on the flag variety. We will then show that the D-modules we
are interested in are regular holonomic by Lemma 3.2 and Proposition 3.11. This allows us to apply the
second equivalence, the Riemann-Hilbert correspondence, which yields perverse sheaves on the flag variety.
Our main goal is Theorem 3.13, which identifies the image of the simple modules and Verma modules under
these two equivalences. The main sources for this section are [Ber83] and [HTT08].

3.1. Beilinson-Bernstein localization. Recall that the flag variety X comes naturally equipped with a
left G-action G×X → X. Differentiating this action gives rise to a natural map

(5) g→ Derk(OX ,OX),

hence a map U(g)→ Γ(X,DX). Given a DX -module M on X, the map (5) endows its global sections Γ(X,M)
with the structure of a U(g)-module. Conversely, given a U(g)-module M , (5) allows us to construct the
DX -module

Loc(M) := DX ⊗
U(g)

M,
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where U(g) is viewed as a (locally) constant sheaf of algebras on X, M is viewed as the corresponding
(locally) constant sheaf of modules over U(g), and the map U(g)→ DX is induced by (5). We call Loc(M)
the localization of M and Loc a localization functor. Some careful computation (which we omit here) shows
that the map of (5) factors through U(g)χ−ρ , meaning that the operations of localization and taking global
sections can be viewed as functors U(g)χ−ρ −mod 
 DMod(X). In [BB81], A. Beilinson and J. Bernstein
showed the following localization theorem, which implies that these functors give an equivalence.

Theorem 3.1 (Beilinson-Bernstein localization). The pair

Loc : U(g)χ−ρ −mod 
 DMod(X) : Γ

is an equivalence of categories.

3.2. B-equivariant DX-modules and perverse sheaves. To study composition series of Verma modules
inO−ρ, it suffices to consider the corresponding DX -modules. For this, we must consider some extra structure
coming from the condition of lying in O−ρ. On Lie algebra side, such a condition comes from the action of
B. Indeed, we say that a representation V of g is B-equivariant if the action of b lifts to an action of the
corresponding Borel subgroup B. Denote by

U(g)χλ,B −mod

the category of B-equivariant U(g)-modules upon which Z(g) acts by χλ. As the following lemma shows, all
g-modules we are concerned with are B-equivariant.

Lemma 3.2. Any representation in category O is B-equivariant. In particular, O−ρ ⊂ U(g)χ−ρ,B.

Proof. By Property (i) in Definition 2.7 and the fact that the action of n increases weight, we see that the
action of n on any object of category O is nilpotent. Further, the weights of h on such an object are integral
because the highest weight of such an object is −wρ − ρ for some w ∈ W . Together, these imply that the
action of b lifts to a compatible action of B. �

On the D-module side, consider the left B-action σ : B × X → X on the the flag variety X, and let
π2 : B ×X → X be the projection. For a DX -module M, we say that M is a B-equivariant DX-module if it
is B-equivariant as an OX -module and the corresponding isomorphism

π∗2M→ σ∗M

is an isomorphism of DB×X -modules. Denote by DMod(X)B the category of B-equivariant DX -modules.
The correspondence of Theorem 3.1 restricts to the following localization of B-equivariant representations.

Theorem 3.3 ([HTT08, Theorem 11.5.3]). The restriction of the equivalence of Theorem 3.1 to the pair

Loc : U(g)χ−ρ,B −mod 
 DMod(X)B : Γ

is an equivalence of categories.

It therefore suffices for us to restrict our attention to B-equivariant DX -modules. It will turn out that
such DX -modules are automatically regular holonomic, which will allow us to understand them in terms of
perverse sheaves. Such perverse sheaves will also be B-equivariant in the following sense.

Consider again the left B-action σ : B × X → X on the flag variety. Then we say a perverse sheaf
M ∈ Perv(X) is B-equivariant if it is equipped with an isomorphism

π∗2M→ σ∗M

in Db
c(B ×X) which satisfies the same cocycle conditions as hold for a B-equivariant OX -module. Denote

the category of B-equivariant perverse sheaves on X by

Perv(X)B .

In the next subsection, we discuss the transformation between DX -modules and perverse sheaves in general.
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3.3. Regular holonomic D-modules and the Riemann-Hilbert correspondence. In this subsection,
we give an overview of the theory of regular holonomic D-modules and their link to perverse sheaves via
the Riemann-Hilbert correspondence. As this is rather deep and technical subject, we will restrict ourselves
mainly to statements of the main results.

First, we recall a fact about holonomic D-modules. Let i : Z ↪→ X be a locally closed affine embedding
of a smooth subvariety. Then, for any OZ-coherent DZ-module F, we define its minimal extension to be

i!?F := Im(i!F → i?F)

as a DX -module. Notice that i!?F is a holonomic DX -module (and not a complex) because DX , DZ , and i? all
send holonomic D-modules to holonomic D-modules and the property of being holonomic is preserved under
taking submodules. When F is furthermore irreducible, this construction yields all irreducible holonomic
DX -modules by the following theorem.

Theorem 3.4 ([HTT08, Theorem 3.4.2]). Suppose that F is an irreducible OZ-coherent DZ-module. Then
its minimal extension i!?F is an irreducible holonomic DX-module. Moreover, all irreducible holonomic
DX-modules take this form.

We are now ready to define the class of regular holonomic D-modules. We will do this in four stages.

Definition 3.5. Let M be a holonomic DX -module. Then, we say that M is regular holonomic if one of the
following conditions holds for the corresponding case.

• If X is a curve C equipped with a smooth completion i : C → C ′ and M is a OX-coherent
DX-module: For any point c ∈ C ′ − C, consider a local coordinate t at c and the subalgebra
D′C′ := OC′ [t∂t] ⊂ DC′ . Then, we say that M has a regular singularity at c if i∗M is the union of its
D′C′ -submodules which are coherent as OC′ -modules.3 We say that M is regular holonomic if it has
a regular singularity at each point of C ′ − C.

• If X is a curve C and M is a OX-coherent DX-module: We say that M is regular holonomic
if the restriction of M to any open U ↪→ C is regular holonomic.

In the preceding two cases, we say also that M has regular singularities.
• If M is OX-coherent: We say that M is regular holonomic if the restriction of M to any curve
C ↪→ X is regular holonomic.

• The general case: We say that M is regular holonomic if any composition factor of M takes
the form i!?F for some locally closed affine embedding i : Y → X and some OY -coherent regular
holonomic DY -module F.

Definition 3.5 will play an essentially formal role for us, as we restrict ourselves to applying the Riemann-
Hilbert correspondence (Theorems 3.8 and 3.9) to regular holonomic D-modules and do not mention its proof.
Denote the derived category of DX -modules with regular holonomic cohomology by Db

rh(DX). Intuitively
speaking, these correspond to systems of differential equations.

Remark. For the case X = A1 − {0}, the original motivation for this definition stems from the study of
differential equations on the punctured complex plane C− {0} of the form

∂

∂z
f(z) = C(z)f(z),

where C(z) is a meromorphic function with poles only at 0. Such a system corresponds to the DX -module

DX/(∂z − C(z))DX ,
and it will turn out that this module is regular if and only if C(z) has a pole of order at most 1 at z = 0.
We refer the reader to [BGK+87, Section 3] for more details.

One might therefore expect some corresponding concept of solution. This is provided by the de Rham
functor DRX . Before defining DRX , we must first briefly discuss some issues relating to analytification.

We have thus far been working implicitly in the algebraic category of varieties over C. For a variety X
over C, denote by

−an : X 7→ Xan

3Because M is holonomic, i∗M is actually a DC′ -module here rather than a complex of DC′ -modules.
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the analytification functor. By abuse of notation, we will also use Man to denote the analytification of a OX
or DX -module. Denote by Db

c(X
an) the derived category of constructible sheaves on Xan with the analytic

topology. We are now ready to define the de Rham functor.

Definition 3.6. The de Rham functor DRX : Db
rh(DX)→ Db

c(X) is given by

DRX(M) = ΩXan ⊗
DXan

Man,

where the canonical sheaf ΩXan is a right DXan -module.

Remark. While DRX may be defined in the same way on Db
coh(DX), we only consider it on Db

rh(DX)
because it possesses good properties there. By this, we mean that DRX commutes with the operations DX ,
f∗, f∗, f

!, and f! of Verdier duality (see [Ber83, Theorem 5.C] for a discussion).

Remark. The de Rham functor of Definition 3.6 is closely related to the perhaps more intuitive solution
functor, which is given by

SolX(M) = RHomDXan (Man,OXan)

and models the idea of solving a system of differential equations. The two satisfy the relation

DRX(M) = SolX(DXM)[dimX],

which allows us to interpret Theorems 3.7 and 3.8 in terms of SolX as well.

Though we have been somewhat careful about distinguishing between X and Xan until this point, for
convenience we will omit the use of −an in the future and use X to denote both what we have thus far called
X and Xan. Which one is meant should be clear from context.

We are now ready to state the Riemann-Hilbert correspondence, a powerful technical result which relates
the algebraically defined category of regular holonomic D-modules to the more analytic category of perverse
sheaves. We will state three versions, one at the derived level and two on the heart.

Theorem 3.7 ([HTT08, Theorem 7.2.1]). The de Rham functor provides an equivalence of categories

DRX : Db
rh(DX)→ Db

c(X).

Theorem 3.8 ([HTT08, Theorem 7.2.5]). The equivalence of Theorem 3.7 restricts to an equivalence of
categories

DRX : DModrh(X)→ Perv(X),

where Perv(X) is the category of perverse sheaves on X.

In analogy to Theorem 3.3, we may restrict this equivalence to DModrh(X)B and Perv(X)B .

Theorem 3.9 ([HTT08, Theorem 11.6.1]). The equivalence of Theorem 3.8 restricts to an equivalence of
categories

DRX : DModrh(X)B → Perv(X)B .

We do not comment on the proofs of Theorems 3.8 and 3.9. However, we give here an example to provide
some intuition for what the de Rham functor does by considering the closely related solution functor, which
is more intuitive to compute.

Example 3.10. Take X = A1 = Spec(k[t]), so that DX = k[z, ∂z]. Consider DX -modules M of the form
DX/D · DX for some D ∈ DX . Then

H0(SolX(M)) = R0 Hom(DX/D · DX ,OX) =
(
U 7→ {f ∈ OU | Df = 0}

)
,

meaning that H0(SolX(M)) is exactly the sheaf of local solutions to the differential equation Df = 0. The
fact that the cohomologies of SolX(M) are local systems then corresponds to the local uniqueness of solutions
to differential equations. For instance, if D = ∂z − 1, then Γ(H0(SolX(M))) = C · ez, and if D = z∂z − n,
then Γ(H0(SolX(M))) = C · zn.
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3.4. The image of category O. We now specialize the discussion of Subsection 3.3 to those DX -modules
coming from g-modules in O−ρ. The key tool which allows us to apply these constructions is the following
proposition.

Proposition 3.11 ([HTT08, Theorem 11.6.1(i)]). If M is a coherent B-equivariant DX-module with respect
to the left B-action on the flag variety, then M is regular holonomic.

Sketch of proof. We restrict ourselves to a discussion of the main ideas. The key observation is that there are
only finitely many left B-orbits on X. The proof is then by induction on the number of B-orbits. In the base
case of a single orbit, we see that π : B → X is a smooth surjective map. The proof uses the B-equivariance
to show that π∗M is regular holonomic, which implies by a general criterion that M is regular holonomic.
We refer the reader to [HTT08] for the details.

For the inductive step, let i : Y → X be the inclusion of a closed B-orbit and j the inclusion of the
complement. This decomposition gives rise to the distinguished triangle

i∗i
!M→M→ j∗j

!M
+1→,

where i!M and i!M are coherent D-modules on X − Y and Y , each of which consists of a smaller number
of B-orbits. By the inductive hypothesis, they have regular holonomic cohomology, hence i∗i

!M and j∗j
!M

do as well. Because the property of being regular holonomic is by definition closed under subquotients, the
long exact sequence in cohomology shows that M is regular holonomic. �

For any g-module V inO−ρ, conditions (i) and (ii) in Definition 2.7 imply precisely that V is B-equivariant.
Therefore, by Theorem 3.3, the corresponding DX -module Loc(V ) is also B-equivariant. Further, condition
(iii) of Definition 2.7 implies that it is also coherent, hence regular holonomic by Proposition 3.11. Finally,
applying the de Rham functor DRX , the Riemann-Hilbert correspondence of Theorem 3.8 implies that

V := DRX(Loc(V ))

is a perverse sheaf on X. In particular, for w ∈W , define the perverse sheaves

Mw := DRX(Loc(M−wρ−ρ))

and

Lw := DRX(Loc(L−wρ−ρ)).

Our goal for the remainder of this section will be to derive the second of the following two theorems from
the first. This will identify M−wρ−ρ and L−wρ−ρ as more familiar perverse sheaves on X. These two
results reduce the computation of composition series of the Verma modules M−wρ−ρ to the computation of
cohomologies of the perverse sheaves IC(Xw).

Theorem 3.12 ([HTT08, Proposition 12.3.2]). Denote by iw : Xw → X and iow : Xo
w → X the inclusions of

the Schubert variety Xw and its open cell Xo
w. In DModrh(X)B, we have (i) Loc(L−wρ−ρ) = (iw)!?(Xw,OXw)

and (ii) Loc(M−wρ−ρ) = DX(iow)?(OXow).

Theorem 3.13. In Perv(X)B, we have (i) Lw = IC(Xw) and (ii) Mw = CXow [dimXw].

Proof. For (i), the Lw must be the simple objects of Perv(X)B by Theorem 3.9 and Theorem 3.12(i). These
all take the form IC(Xv) because Xv are the B-equivariant strata of X, so it remains only to check that
Lw restricts to the constant sheaf on Xo

w. Indeed, this follows because the restriction of Loc(L−wρ−ρ) =
(iw)!∗(Xw,OXw) to Xo

w is OoXw , which is mapped to CXow under DRXow .

For (ii), we compute using Theorem 3.12 and the fact that DRX commutes with DX and (iow)∗ to see

Mw = DRX(DX(iow)∗(OXow)) = DX((iow)∗(DRX(OXow)).

Now, we have DRX(OXow) = CXow [dimXw], which allows us to conclude

Mw = DX((iow)∗(CXow [dimXw])) = CXow [2 dimXw − dimXw] = CXow [dimXw]. �
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4. The Kazhdan-Lusztig conjectures

In this section, we compute the intersection cohomologies of Schubert varieties suggested by Theorem
3.13. This will allow us to finally obtain a formula for the multiplicities of L−wρ−ρ in the Verma modules
M−wρ−ρ. Before the computation proper, we first introduce the Hecke algebra of a Weyl group and its
Kazhdan-Lusztig polynomials, which are necessary to state the answer, and the Bott-Samelson resolution of
the Schubert varieties, which is necessary to perform the computation. We then prove the main technical
result, Theorem 4.14, using an approach due originally to R. MacPherson. Finally, we gather everything
together to give a proof of Theorem 4.4. This section draws from a large number of sources. We mainly
follow the exposition of [Ric10a], [Ric10b], and [Spr81] for the specific approach we take. We follow [Soe97]
for the proof of Proposition 4.1. Finally, we are generally indebted to [dCM09] and [HTT08].

4.1. Hecke algebras and Kazhdan-Lusztig polynomials. Let W be a Weyl group (or more generally a
Coxeter group) with a generating set of reflections s1, . . . , sn. The Hecke algebra of W is the Z[q, q−1]-algebra
H(W ) with Z[q, q−1]-basis Tw for w ∈W and multiplication given by Te = 1 and the relations

(6) TsTw =

{
Tsw `(sw) > `(w),

(q2 − 1)Tw + q2Tsw `(sw) < `(w)

for s a reflection and w ∈ W . Since any w ∈ W is the product of simple reflections, (6) uniquely defines an
algebra structure on H(W ).

Remark. The specializations q = 1 and q = −1 of H(W ) simply give the group algebra Z[W ] of W .

Applying the second relation of (6) for w = s shows that T 2
s = (q2 − 1)Ts + q2, so Ts is invertible with

(7) T−1s = Tsq
−2 − 1 + q−2.

Combining this with the first relation shows that each Tw is invertible. We may therefore define a canonical
involution of Z-algebras i : H(W )→ H(W ) by

i(q) = q−1 and i(Tw) = T−1w−1 .

It is easy to check that i respects the relations of H(W ). We would like now to consider some special elements
Cw ∈ H(W ) which are invariant under i and whose coefficients when expressed in the Tw-basis form an upper
triangular matrix under the Bruhat-Chevalley order. More precisely, we have the following.

Proposition 4.1. There exist unique elements Cw ∈ H(W ) and polynomials Pv,w(q) ∈ Z[q] such that

(i) i(Cw) = Cw;
(ii) Cw = q−`(w)

∑
v≤w Pv,w(q)Tv;

(iii) Pw,w = 1, and Pv,w(q) is a polynomial of degree at most `(w)− `(v)− 1 for v < w.

Moreover, the odd degree coefficients of Pv,w(q) vanish.

Proof. We first prove the existence by induction on the Bruhat-Chevalley order. For the base case e ∈ W ,
we may take Ce = 1. Further, for a simple reflection s ∈W , take Cs = q−1(Ts + 1), so that by (7) we have

i(Cs) = q−1(Tsq
−2 − 1 + q−2 + 1) = Cs.

This establishes existence for `(w) ≤ 1. Suppose now that there exist Cv and polynomials Pv′,v(q) satisfying
Properties (i), (ii), and (iii) for v′, v < w. Choose a reflection s such that `(sw) < `(w). By our inductive
hypothesis, we have

Csw = q−`(sw)
∑
v≤sw

Pv,sw(q)Tv.

Multiplying on the left by Cs = q−1(Ts + 1) and noting that

(Ts + 1)Tv = (Tsv + Tv) ·

{
1 `(sv) > `(v)

q2 `(sv) < `(v),

we obtain

Cs · Csw = q−`(w)
∑
v≤sw

Pv,sw(q)(Ts + 1)Tv = q−`(w)

[
Tw +

∑
v<w

Rv,w(q)Tv

]
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for some polynomials Rv,w(q) with

degRv,w(q) ≤ max{degPv,sw(q),degPsv,sw(q) + 2}
≤ max{`(w)− `(v)− 2, `(w)− 1− `(v)− 1 + 2} = `(w)− `(v),

where we’ve applied the induction hypothesis. Let rv,w be the coefficient of q`(w)−`(v) in Rv,w. Now, define

(8) Cw = Cs · Csw −
∑
v<w

rv,wCv.

Note that i(Cw) = Cw by the inductive hypothesis and the fact that Rv,w(0) ∈ Z. Then, we see that

Cw = q−`(w)

[
Tw +

∑
v<w

Rv,w(q)Tv −
∑
v<w

rv,wCv

]

= q−`(w)

Tw +
∑
v<w

Rv,w(q)Tv −
∑
v<w

∑
u≤v

q`(w)−`(v)rv,wPu,v(q)Tu


= q−`(w)

Tw +
∑
v<w

(
Rv,w(q)−

∑
v≤u<w

q`(w)−`(u)ru,wPv,u(q)
)
Tv


Notice that

deg
(
Rv,w(q)−

∑
v≤u<w

q`(w)−`(u)ru,wPv,u(q)
)
≤ `(w)− `(v)− 1

because this expression is the difference of two polynomials of degree at most `(w) − `(v) whose q`(w)−`(v)

coefficients are the same. Further, all terms Tv which appear in Cw satisfy v ≤ w and the coefficient of Tw
is 1. Therefore, we conclude that Cw takes the form

Cw = q−`(w)
∑
v≤w

Pv,w(q)Tv

with Pw,w(q) = 1 and degPv,w ≤ `(w) − `(v) − 1 for v < w. This implies that Cw and Pv,w(q) satisfy
properties (i), (ii), and (iii), completing the induction.

Let us now check the uniqueness. Suppose that we had two sets of elements Cw and C ′w satisfying the
conditions for two sets of polynomials Pv,w(q) and P ′v,w(q). Set Dw = Cw − C ′w and Qv,w(q) = Pv,w(q) −
P ′v,w(q), so that i(Dw) = Dw, degQv,w(q) ≤ `(w)− `(v)− 1, and

Dw = q−`(w)
∑
v<w

Qv,w(q)Tv.

Choose v maximal so that Qv,w(q) is non-zero. Observe now that the form of (7) implies that T−1v−1 , as an
element of the Hecke algebra, takes the form

T−1v−1 = q−2`(v)Tv +
∑
u<v

Gu,v(q)Tu

for some Laurent polynomials Gu,v(q). Further, for u < w, the only element i(Tu) with non-zero coefficient
for Tv is i(Tv). Therefore, the coefficient of Tv in i(Dw) = Dw is given by

q`(w)Qv,w(q−1)q−2`(v) = q−`(w)Qv,w(q),

implying that

q2`(w)−2`(v)Qv,w(q−1) = Qv,w(q),

which is impossible because the left hand side has degree at least `(w)− `(v) + 1 and the right had side has
degree at most `(w)− `(v)− 1. Thus, we see that Dw = 0 for all w, so the elements Cw are unique.

It remains only to verify that Pv,w(q) has non-zero coefficients only in even degrees. This follows by noting
that in construction (8), rv,w = 0 if `(w) and `(v) do not have the same parity. �

The polynomials Pv,w are known as the Kazhdan-Lusztig polynomials. Their values will be the multiplic-
ities of the simple g-modules in the composition series of a Verma module. Let us see some examples of
Pv,w(q).



12 YI SUN

Example 4.2. We first consider some small general cases.

• If w = 1, then Pw,w(q) = 1.
• If w = s, then Cs = q−1(Ts + 1), so P1,s(q) = Ps,s(q) = 1.
• If w = s1s2, then

Cs1 · Cs2 = q−2(Ts1s2 + Ts1 + Ts2 + 1),

so Rv,s2(q) = 0 for all v, hence Cw = q−2(Ts1s2 + Ts1 + Ts2 + 1) and Pv,w(q) = 1 for v ≤ w.

Example 4.3. Having seen a number of instances where Pv,w(q) is trivial, let us consider type A3, one of
the simplest cases where these polynomials can be nontrivial. In this case, the Weyl group S4 is generated
by s1, s2, s3 with the relations s1s2s1 = s2s1s2, s2s3s2 = s3s2s3, and s1s3 = s3s1. In particular, the element
s2s1s3s2 is a reduced decomposition. By our previous computation, we have

Cs2s1 = q−2(Ts2s1 + Ts1 + Ts2 + 1)

and
Cs3s2 = q−2(Ts3s2 + Ts3 + Ts2 + 1).

Multiplying and considering the degrees of the coefficients of the Tw, we find that Cs2s1s3s2 = Cs2Cs1Cs3Cs2
and that the terms

(q2 + 1)Ts2 and (q2 + 1)

have coefficient not equal to 1. This means that

Ps2,s2s1s3s2(q) = P1,s2s1s3s2(q) = q2 + 1.

Remark. While the proof of Proposition 4.1 gives in principle an algorithm for explicitly computing Pv,w(q)
for specific choices of W , v, and w, there is no explicit general formula. As can be seen from the last example,
computation by this method is quite inefficient.

4.2. Statement of the conjecture. We are now ready to state the main result of this paper, which gives
an explicit description of the simple modules occurring in the composition series of the Verma modules. This
result was first conjectured by D. Kazhdan and G. Lusztig in [KL79] and is known as the Kazhdan-Lusztig
conjecture.

Theorem 4.4 (Kazhdan-Lusztig conjecture). In the Grothendieck group of the category O−ρ of g-modules,
we have

[L−wρ−ρ] =
∑
v≤w

(−1)`(v)−`(w)Pv,w(1)[M−vρ−ρ].

The proof of Theorem 4.4 uses the correspondences presented in the previous two sections to reduce the
problem to a computation of intersection cohomology on Schubert varieties. This final computation was first
done by A. Beilinson and J. Bernstein using characteristic p methods. We will present a purely geometric
proof using the Bott-Samelson resolution of Schubert varieties due to R. MacPherson and presented by T. A.
Springer in [Spr81]. We defer the proof to first see some consequences. First, the following corollary, which
may be obtained from Theorem 4.4 by formal computations using Kazhdan-Lusztig polynomials, shows that
Theorem 4.4 indeed provides the promised multiplicities of the simple objects of O−ρ in the Verma modules.

Corollary 4.5 ([KL79, Theorem 3.1]). In the Grothendieck group of the category O−ρ of g-representations,
we have

[M−wρ−ρ] =
∑
v≤w

Pw0w,w0v(1)[L−vρ−ρ].

Example 4.6. We consider some explicit examples for small types.

• Type A1: We have g = sl2, so the root lattice of g is 2Z, ρ = 1, and W = S2 acts by reflection
about the origin. Further, O−ρ contains two simple objects, L−2 and L0, and two Verma modules,
M−2 and M0. By Example 4.2, we see that all non-zero Kazhdan-Lusztig polynomials are equal to
1 in this case, so Theorem 4.4 implies in this case that

[L−2] = [M−2] and [L0] = [M0]− [M−2].

We see that M−2 is irreducible and that [M0] = [L0] + [L2], with the latter equality coming from
the exact sequence

0→M2 ' L2 →M2 → L2 → 0.
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• Type A2: We have g = sl3. The root lattice of g is generated by two simple roots α and β so that
{α, β, α+ β,−α,−β,−α− β} form the root system. Then ρ = α+ β, and W = S3 acts via the two
reflections exchanging α+β and one of α or β. Further, O−ρ contains 6 simple objects and 6 Verma
modules with highest weights at 0,−α,−β,−2α − β,−2β − α,−2β − 2α. They correspond to the
set −Wρ− ρ and fit into the Bruhat-Chevalley order as follows.

0

−α
�

−β
-

−2β − α
?�

−2α− β
?-

−2β − 2α
�

-

Thus, noting that we may extend the calculations of Example 4.2 slightly to check that all non-
zero Kazhdan-Lusztig polynomials are equal to 1 in this case, we may summarize the conclusion of
Theorem 4.4 by the following matrix

[L0]
[L−α]
[L−β ]

[L−2β−α]
[L−2α−β ]
[L−2β−2α]

 =


1 −1 −1 1 1 −1
0 1 0 −1 −1 1
0 0 1 −1 −1 1
0 0 0 1 0 −1
0 0 0 0 1 −1
0 0 0 0 0 1




[M0]

[M−α]
[M−β ]

[M−2β−α]
[M−2α−β ]
[M−2β−2α]

 .

Inverting this matrix gives the multiplicities of the simple modules in the Verma modules
[M0]

[M−α]
[M−β ]

[M−2β−α]
[M−2α−β ]
[M−2β−2α]

 =


1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1




[L0]

[L−α]
[L−β ]

[L−2β−α]
[L−2α−β ]
[L−2β−2α]

 .

• Type A3: We have g = sl4 and W = S4. In this case, O−ρ will have |W | = 24 simple objects, so the
full multiplicity matrix will be a bit unwieldy to calculate. However, we note that for types A1 and
A2, each multiplicity we have encountered has been either 0 or 1. For type A3, this will no longer
be true. Indeed, notice that the longest element w0 ∈ S4 is given by w0 = s1s2s3s1s2s1, hence our
computations of

Ps2,s2s1s3s2(q) = P1,s2s1s3s2(q) = q2 + 1

in Example 4.3 show that

[M−s1s2s3s2s1ρ−ρ : L−s3s1ρ−ρ] = [M−s1s2s3s1s2s1ρ−ρ : L−s3s1ρ−ρ] = 2.

We note that the computations for this example were done in Sage.
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4.3. A modification of the Schubert varieties. Instead of calculating directly on the Schubert varieties,
we instead consider a modification which will later allow us to define a convolution product on it. Define
X = X ×X, and consider the diagonal G-action on X. By the Bruhat decomposition, each G-orbit on X has
a unique element of the form (B/B,wB/B) for w ∈W , hence we obtain a stratification

(9) X =
⊔
w∈W

G · (B/B,wB/B).

Take Xow = G · (B/B,wB/B) to be the cells of this decomposition, and let Xw = G · (B/B,wB/B) be the
closure of Xow. This is called the G-Schubert variety. We may characterize Xow and Xw in the following
manner, which establishes a strong analogy to the case of Schubert varieties and shows that the Xow provide
a stratification of X ×X, each of whose strata is a fiber bundle over X.

Proposition 4.7. The following properties hold:

(i) We have the decomposition

Xw =
⊔
v≤w

G · (B/B, vB/B);

(ii) the first projection π : Xow → X realizes G · (B/B,wB/B) as a fiber bundle over X with fiber Xo
w;

(iii) the first projection π : Xw → X realizes Xw as a fiber bundle over X with fiber Xw.

Proof. Each of these properties follows easily from the decomposition of Proposition 2.2(iv). �

Example 4.8. We see that X1 = G · (B/B,B/B) ' ∆(X) is simply the diagonal embedding of X in X.
Further, for a simple reflection s ∈W , Xs is a Xs ' P1-bundle over X.

Proposition 4.7 allows us to relate intersection cohomologies on Xw and Xw.

Proposition 4.9. Let v ≤ w. Then we have the following:

(i) for v ≤ w, Hi(IC(Xw)) is constant along Xov, and
(ii) Hi(IC(Xw))(B/B,vB/B) = Hi+dimX(IC(Xw))vB/B.

Proof. For (i), notice that IC(Xw) is a G-equivariant element of Perv(X), hence Hi(IC(Xw)) is a G-
equivariant sheaf on X, meaning that its stalks are constant on the G-orbits Xov.

For (ii), choose an affine open neighborhood U of eB/B which is isomorphic to AdimX , and let U ′ = π−1(U)
so that U ′ ' Xw × U . Denote by j : U → X and j′ : U ′ → Xw the inclusions and by p : U ′ → Xw a choice
of projection compatible with stratification. Notice that (B/B, vB/B) ∈ U ′, so we have

Hi(IC(Xw))(B/B,vB/B) = Hi((j′)∗IC(Xw))(B/B,vB/B) = Hi(IC(U ′))(B/B,vB/B).

By the Kunneth theorem for intersection cohomology (see [CGJ92, Proposition 2]), we see that

IC(U ′) = π∗IC(U ′)⊗ p∗IC(Xw) = π∗CU ′ [dimX]⊗ p∗IC(Xw) = p∗IC(Xw)[dimX],

which shows that

Hi(IC(U ′))(B/B,vB/B) = Hi(p∗IC(Xw)[dimX])(B/B,vB/B)

= Hi+dimX(IC(Xw))p((B/B,vB/B))

= Hi+dimX(IC(Xw))vB/B ,

implying the desired

Hi(IC(Xw))(B/B,vB/B) = Hi+dimX(IC(Xw))vB/B . �

Remark. In Proposition 4.9(ii) and in the remainder of this paper, it is sensible for us to considerHi(IC(Xw))(B/B,vB/B)

and Hi+dimX(IC(Xw))vB/B because Hi(IC(Xw)) and Hi+dimX(IC(Xw)) are constant along the open strata
Xov and Xo

v .



PERVERSE SHEAVES AND THE KAZHDAN-LUSZTIG CONJECTURES 15

4.4. The Bott-Samelson resolution. In this subsection we construct and briefly summarize the main
properties of the Bott-Samelson resolution of the G-Schubert variety. This resolution is again defined in
close analogy to the usual Bott-Samelson resolution of the Schubert variety. Let w = (si1 , . . . , sin) be a
reduced decomposition of some w ∈W , and define the G-Bott-Samelson variety to be the closed subvariety

Zw :=
{

(x0, . . . , xn+1) ∈ Xn+1 | (xk, xk+1) ∈ Xsik

}
of Xn+1.4 In this way, Zw is equipped with a map πw : Zw → X ×X given by projection on the first and
last coordinates. It is evident that the image of πw lies in Xw, and in fact the following proposition shows
that πw is a resolution of Xw.

Proposition 4.10. We have the following:

(i) the Bott-Samelson variety Zw is smooth,
(ii) the map πw : Zw → Xw is projective, and

(iii) πw is an isomorphism on G · (B/B,wB/B), making it a resolution of singularities of Xw.

Proof. For (i), defining w[k] = (si1 , . . . , sik) to consist of the first k reflections in the word w (so that
w = w[n]), we see that

Zw = Zw[n] → Zw[n−1] → · · · → Zw[1] = Xsi1
' P1

realizes Zw as a sequence of P1 bundles, since by Proposition 4.7(iii) each map Zw[k] → Zw[k−1] is a P1-bundle.

For (ii), we note simply that X is projective and that πw factors through Zw → Xn+1 → Xw, where the
last map is a projection.

For (iii), notice that the points of Zw take the form z = (gB/B, gr1B/B, gr1r2B/B, . . . , gr1r2 · · · rnB/B),
where rk is either sik or 1. In particular, πw(z) ∈ G · (B/B,wB/B) if and only if rk = sik for all k. On the
domain where this occurs, πw is evidently an isomorphism onto G · (B/B,wB/B). �

Finally, we note the following alternate formulation of Zw which will be more convenient for defining the
convolution product.

Proposition 4.11. We may realize Zw as

Zw = Xsi1 ×X
Xsi2 ×X

· · · ×
X
Xsin .

Proof. This is clear from looking at the points of Zw and the fiber product on the right. �

4.5. The convolution product. We are now ready to introduce the key technical tool of our computation.
Let Db

c(X) be the bounded derived category of sheaves on X which are constructible with respect to the
stratification in (9). Let πi : X×

X
X → X be the projection from the ith coordinate, and let π′ : X×

X
X → X

be the projection

X×
X
X→ (X ×X)×

X
(X ×X)→ X ×X

from the first and last copy of X. Define the convolution product on Db
c(X) by the map

◦ : Db
c(X)×Db

c(X)→ Db
c(X)

given by

F1 ◦ F2 = π′∗

(
π∗1F1 ⊗

C
π∗2F2

)
.

We provide a reformulation which will be more convenient. Consider the projections

πi : X×
X
X×
X
· · · ×

X
X︸ ︷︷ ︸

n

→ X

from the ith coordinate, and let π′ again be the projection from the first and last copy of X. Then we may
characterize the iterated convolution product as follows.

4We will omit the “G-” to simplify our terminology.
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Proposition 4.12. For Fi ∈ Db
c(X), we have

F1 ◦ · · · ◦ Fn = π′∗

(
π∗1F1 ⊗

C
· · · ⊗

C
π∗nFn

)
for any choice of parenthetical order on the left side. In particular, ◦ is an associative product.

Proof. We first check the case n = 3, which will give associativity. Consider the Cartesian square

X×
X
X×
X
X
ρ12- X×

X
X

X×
X
X

ρ′12 × id3

? ρ1 - X,

ρ′

?

where ρ′ is the projection from the first and last copy of X and ρ′12 × id3 is the base change of ρ′ with X

over X.5 Let ρ2 : X×
X
X→ X be the second projection. Applying base change to the diagram and then the

projection formula, we see that

(F1 ◦ F2) ◦ F3 = ρ′∗

(
ρ∗1ρ
′
∗(ρ
∗
1F1 ⊗ ρ∗2F2)⊗ ρ∗2F3

)
= ρ′∗

(
(ρ′12 × id3)∗(π

∗
1F1 ⊗ π∗2F2)⊗ ρ∗2F3

)
= ρ′∗

(
(ρ′12 × id3)∗

(
π∗1F1 ⊗ π∗2F2 ⊗ (ρ′12 × id3)∗ρ∗2F3

))
= π′∗(π

∗
1F1 ⊗ π∗2F2 ⊗ π∗3F3).

An obvious analogue of this computation shows that F1 ◦ (F2 ◦F3) is equal to this expression, implying that
the product is associative.

For the general case, we induct on n. If the claim holds for some n− 1, then note

(F1 ◦ · · · ◦ Fn−1) ◦ Fn = ρ′∗

(
ρ∗1π
′
∗(π
∗
1F1 ⊗

C
· · · ⊗

C
π∗n−1Fn−1)⊗ ρ∗2Fn

)
= π′∗

(
π∗1F1 ⊗

C
· · · ⊗

C
π∗nFn

)
by the same base change and projection argument as in the case n = 3. �

4.6. Intersection cohomology of Schubert varieties. We are now ready to compute the intersection
cohomology of the Schubert varieties. We will mainly work with the G-Schubert varieties and translate
the result over. Our general strategy will be to consider the pushforwards (πw)∗CZw

of IC-sheaves on
the Bott-Samelson varieties (which are simply constant because Zw is smooth). We then decompose these
pushforwards into IC-sheaves (which are now non-trivial) on the singular G-Schubert varieties. Examining
the decomposition carefully then gives the result.

Let us now proceed to the computation proper. For F ∈ Db
c(X), define

hi(F(B/B,wB/B)) := dimHi(F)(B/B,wB/B)

to be the dimension of the stalk of Hi(F)(B/B,wB/B) at (B/B,wB/B) ∈ X. Because F is constructible with

respect to the stratification of (9), this describes Hi(F) completely on the open stratum Xow. Define the
element h(F) ∈ H(W ) of the Hecke algebra by

h(F) =
∑
w∈W

∑
i∈Z

hi(F(B/B,wB/B))q
i · Tw.

The key step of the computation will be the following lemma, which describes the behavior of cohomology
under the convolution product.

5We denote all projections in this diagram by ρ to avoid confusion with π, which will denote the projections from the n-fold

fiber product.
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Lemma 4.13. Let F ∈ Db
c(X) have non-zero cohomology in only a single parity class of degrees. Then for

any simple reflection s, the same holds for CXs
◦ F and further we have

h(CXs
◦ F) = (Ts + 1) · h(F).

Proof. Let us first translate this statement into more concrete terms. By definition, we see that

(Ts + 1) · h(F) =
∑
w∈W

∑
i∈Z

hi(F(B/B,wB/B))q
i

{
Tsw + Tw `(sw) > `(w)

q2(Tsw + Tw) `(sw) < `(w).

=
∑
w∈W

∑
i∈Z

Tw

{
hi(F(B/B,wB/B))q

i + hi(F(B/B,swB/B))q
i+2 `(sw) > `(w)

hi(F(B/B,wB/B))q
i+2 + hi(F(B/B,swB/B))q

i `(sw) < `(w)

=
∑
w∈W

∑
i∈Z

qiTw

{
hi(F(B/B,wB/B)) + hi−2(F(B/B,swB/B)) `(sw) > `(w)

hi−2(F(B/B,wB/B)) + hi(F(B/B,swB/B)) `(sw) < `(w).

Thus, it suffices for us to show that

(10) hi((CXS
◦ F)(B/B,wB/B)) =

{
hi(F(B/B,wB/B)) + hi−2(F(B/B,swB/B)) `(sw) > `(w)

hi−2(F(B/B,wB/B)) + hi(F(B/B,swB/B)) `(sw) < `(w).

Indeed, combining (10) and the parity condition on cohomology for F yields the parity condition for CXs
◦F.

Now, let ρ : (π′)−1(B/B,wB/B)→ X×
X
X be the inclusion. By proper base change, we see that

Hi
(
CXs
◦ F
)
(B/B,wB/B)

= Hi

(
π′∗(π

∗
1CXs

⊗
C
π∗2F)

)
(B/B,wB/B)

= Hi

(
(π′)−1(B/B,wB/B), ρ∗(π∗1CXs

⊗
C
π∗2F)

)
.

On the other hand, as a sheaf on X ×X ×X, π∗1CXs
⊗
C
π∗2F is supported on Xs ×X. Thus for

Ys,w := (π′)−1(B/B,wB/B) ∩ (Xs ×X) = {B/B} × Ps × {wB/B} ' P1

and the inclusion τ : Ys,w → X×
X
X, we see that

Hi
(
CXs
◦ F
)
(B/B,wB/B)

= Hi

(
(π′)∗(B/B,wB/B), ρ∗(π∗1CXs

⊗
C
π∗2F)

)
= Hi

(
Ys,w, τ∗(π∗1CXs

⊗
C
π∗2F)

)
.

To complete the proof, we recall that CXs
and F are constructible with respect to the stratification of (9).

Further, this stratification induces a stratification

X×
X
X =

⊔
v,w∈W

G · (B/B,wB/B)×
X
G · (B/B, vB/B)

with respect to which π∗1CXs
⊗C π

∗
2F is constructible. Note that the closure of each cell of this stratification

is given by

G · (B/B,wB/B)×
X
G · (B/B, vB/B) =

⊔
w′≤w,v′≤v

G · (B/B,w′B/B)×
X
G · (B/B, v′B/B).

We will restrict this stratification to Ys,w. We split into two cases depending on the the value of `(sw).
First, suppose that `(sw) > `(w). Then, we see that (B/B, bsB/B,wB/B) lies in the stratum

G · (B/B, vB/B)×
X
G · (B/B, v′B/B)

if and only if sb−1w ∈ Bv′B and bs ∈ BvB, which occurs if and only if v = s and v′ = sw by Proposition
2.2(iii). On the other hand, (B/B,B/B,wB/B) evidently lies in the stratum

G · (B/B,B/B)×
X
G · (B/B,wB/B),

so Ys,w lies in two strata

Ys,w = (B/B,B/B,wB/B) ∪ (B/B,BsB/B,wB/B) ' {pt} ∪ A1,
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both of which are contractible. Let i : (B/B,B/B,wB/B) ↪→ Ys,w and j : (B/B,BsB/B,wB/B) ↪→ Ys,w
be the inclusions, which give rise to a distinguished triangle

(11) j!j
∗τ∗(π∗1CXs

⊗
C
π∗2F)→ τ∗(π∗1CXs

⊗
C
π∗2F)→ i∗i

∗τ∗(π∗1CXs
⊗
C
π∗2F)

+1→ .

Notice that

i∗τ∗(π∗1CXs
⊗
C
π∗2F) = (CXs

)(B/B,B/B) ⊗
C
F(B/B,wB/B) = F(B/B,wB/B).

Now, set G = j∗τ∗(π∗1CXs
⊗
C
π∗2F) so that the cohomologies of G are constant sheaves (as G is constructible

with respect to the trivial stratification on A1). By Poincaré duality, we have

Hi
c(A1,G) = H−i(A1,DG) = H−i(A1,RHom(G,C[2])) = H−i+2(A1,RHom(G,C)),

where the cohomologies ofRHom(G,C) are constant sheaves. Therefore, we see that for p = (B/B, swB/B) ∈
A1, we have

H−i+2(A1,RHom(G,C)) = H−i+2(RHom(G,C))p = H−i+2(RHom(Gp,Cp)) = H−i+2(G∨p ) = Hi−2(Gp),

where for a complex of vector spaces V •, we set (V ∨)i = V −i. Computing, we see that

Gp = (CXs
)(B/B,sB/B) ⊗

C
F(B/B,swB/B) = F(B/B,swB/B),

which shows that

Hi
c(A1, j∗τ∗(π∗1CXs

⊗
C
π∗2F)) = Hi−2(F(B/B,swB/B))).

The long exact sequence in compactly supported cohomology associated to (11) is therefore

· · · → Hi−2(F(B/B,swB/B)))→ Hi
c(Ys,w, τ∗(π∗1CXs

⊗
C
π∗2F))→ Hi(F(B/B,wB/B))

→ Hi−1(F(B/B,swB/B)))→ · · · .
By our assumption that the cohomology of F is non-zero in only a single parity class, this long exact sequence
breaks up into the short exact sequences

0→ Hi−2(F(B/B,swB/B))→ Hi
c(Ys,w, τ∗(π∗1CXs

⊗
C
π∗2F)) = Hi((CXs

◦F)(B/B,wB/B))→ Hi(F(B/B,wB/B))→ 0,

which gives (10) in this case. Here we recall that Ys,w ' P1, hence

Hi
c(Ys,w, τ∗(π∗1CXs

⊗
C
π∗2F)) = Hi(Ys,w, τ∗(π∗1CXs

⊗
C
π∗2F)).

It remains to consider the case `(sw) < `(w). By a similar analysis, we see that Ys,w lies in two strata,
with (B/B, sB/B,wB/B) the unique point of Ys,w lying in

G · (B/B, sB/B)×
X
G · (B/B, swB/B)

and all other points of Ys,w lying in

G · (B/B, sB/B)×
X
G · (B/B,wB/B).

Taking i to be the inclusion of (B/B, sB/B,wB/B) and j the inclusion of its complement, we thus obtain
the distinguished triangle (11) for these differently defined i and j. Again applying compactly supported
cohomology gives, after application of our parity condition on cohomology, the short exact sequences

0→ Hi−2(F(B/B,wB/B))→ Hi
c(Ys,w, τ∗(π∗1CXs

⊗
C
π∗2F)) = Hi((CXs

◦F)(B/B,wB/B))→ Hi(F(B/B,swB/B))→ 0,

which imply (10) in this case. This completes the proof. �

We are now ready to complete the computation. We will perform our main work on the G-Schubert
varieties Xw and then use Proposition 4.9 to transfer it to the Schubert varieties Xw.

Theorem 4.14. For w ∈W , we have that

h(IC(Xw)) = q− dimX · Cw,
where Cw ∈ H(W ) are the elements of Proposition 4.1.
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Proof. Let w = (si1 , . . . , sin) be a reduced decomposition of w, where n = `(w). We first note that the map
πw : Zw → Xw of Proposition 4.10 may easily be seen to be the restriction of the map π′ : X×

X
· · · ×

X
X→ X

when viewing Zw in the form of Proposition 4.11. Our proof will center on the study of π′∗IC(Zw). Because
Zw is smooth, we see that IC(Zw) = CZw

[n+ dimX], where

CZw
= π∗1CXsi1

⊗
C
· · · ⊗

C
π∗nCXsin

.

By Proposition 4.12, this implies that

π′∗IC(Zw) = (CXsi1
◦ · · · ◦ CXsin

)[n+ dimX].

Because each CXsik
has cohomology only in degree 0, Lemma 4.13 gives

(12) h(π′∗IC(Zw)) = q−n−dimX(Tsi1 + 1) · (Tsi2 + 1) · · · (Tsin + 1).

On the other hand, the decomposition theorem shows that

(13) π′∗IC(Zw) =
⊕
v≤w

⊕
k

IC(Xv)
⊕mv,w,k [k]

for some multiplicities mv,w,k, which implies that

(14) h(π′∗IC(Zw)) =
∑
v≤w

∑
k

q−kmv,w,k · h(IC(Xv)).

Since we know h(π′∗IC(Zw)) explicitly by (12), it remains only to formally invert (14). We will do this by
making three observations about the mv,w,k.
Observation 1: By Proposition 4.10, π′∗ is an isomorphism over G · (B/B,wB/B). In particular, the right
hand side of (13) must then have rank 1 over G · (B/B,wB/B), so we must have

mw,w,k =

{
1 k = 0

0 otherwise.

Observation 2: Because π′ is proper by Proposition 4.10, it commutes with duality, meaning that

π′∗IC(Zw) = D(π′∗IC(Zw)) =
⊕
v≤w

⊕
k

IC(Xv)
⊕mv,w,k [−k],

which shows that mv,w,k = mv,w,−k.
Observation 3: We show that i(qdimXh(IC(Xw))) = qdimXh(IC(Xw)) by induction on w. Suppose that the
statement holds for all v < w. Combining Observations 1 and 2, the formula (14) becomes

h(π′∗IC(Zw)) = h(IC(Xw)) +
∑
v<w

h(IC(Xv))
∑
k

q−kmv,w,k

Rearranging and applying (12), we find that

qdimXh(IC(Xw)) = q−`(w)(Tsi1 + 1) · · · (Tsin + 1)−
∑
v<w

qdimXh(IC(Xv))
∑
k

q−kmv,w,k.

By (7) we have i(Ts + 1) = 1
q2 (Ts + 1), and combining this with Observation 2 yields

i(qdimXh(IC(Xw))) = i

(
q−`(w)(Tsi1 + 1) · · · (Tsin + 1)−

∑
v<w

qdimXh(IC(Xv))
∑
k

q−kmv,w,k

)
= q−`(w)(Tsi1 + 1) · · · (Tsin + 1)−

∑
v<w

qdimXh(IC(Xv))
∑
k

qkmv,w,k

= qdimXh(IC(Xw)).

Finishing the proof: We are now ready to show that qdimXh(IC(Xw)) satisfies the same properties as Cw,
which will yield the desired conclusion by Proposition 4.1. Again, we will induct on w. Suppose that
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qdimXh(IC(Xv)) = Cv for all v < w. Then, notice that

qdimXh(IC(Xw)) = q−`(w)

[
(Tsi1+ 1) · · · (Tsin+ 1)−

∑
v<w

Cv
∑
k

qk+`(w)mv,w,k

]
(15)

= q−`(w)
∑
v≤w

Qv,w(q)Tv(16)

for some polynomials Qv,w(q) with Qw,w(q) = 1, where we applied the multiplication rule (6) and property
(ii) of Cv given by Proposition 4.1.

On the other hand, recall that IC(Xw) was defined to satisfy

dim suppH−j(IC(Xw)) < j,

meaning that
H−j(IC(Xw)(B/B,vB/B)) = 0 for j ≤ dimX + `(v) = dimXv.

This implies that

qdimXh(IC(Xw)) =
∑
w∈W

∑
i<− dimX−`(v)

hi(IC(Xw)(B/B,vB/B)) · qi+dimX · Tw = q−`(w)
∑
v≤w

Qv,w(q)Tw,

which shows that Qv,w(q) = 0 for v > w, Qw,w(q) = 1, and

Qv,w(q) =
∑

i<− dimX−`(v)

hi(IC(Xw)(B/B,vB/B)) · qi+dimX+`(w)

has degree at most `(w) − `(v) − 1. Combining this with Observation 3 and (16) allows us to apply the
uniqueness portion of Proposition 4.1 to see that

qdimXh(IC(Xw)) = Cw and Pv,w(q) = Qv,w(q),

completing the proof. �

Theorem 4.14 gives us complete knowledge of the intersection cohomology of Xw. We summarize the
consequences as follows.

• If i − dimX is even, the final line of Proposition 4.1 shows that Pv,w(q) has only odd non-zero
coefficients, meaning that

hi−dimX(IC(Xw)) = 0.

• If i− dimX is odd, we find that hi−dimX(IC(Xw)B/B,vB/B) is the coefficient of qi+`(w) in Pv,w(q).

It is now easy for us to compute the intersection cohomology of Xw. For F ∈ Db
c(X), define an element

h(F) ∈ H(W ) by

h(F) =
∑
w∈W

∑
i∈Z

hi(FwB/B)qi · Tw.

Note that we are abusing notation here by defining h(F) for F in both Db
c(X) and Db

c(X).

Corollary 4.15. For w ∈W , we have
h(IC(Xw)) = Cw.

Proof. This follows immediately from Theorem 4.14 and Proposition 4.9. �

4.7. Putting it all together. We now combine our work so far to give a proof of Theorem 4.4.

Proof of Theorem 4.4. By Theorems 3.3 and 3.8, it suffices to write [Mw] in terms of [Lw] in the Grothendieck
group of Perv(X)B . For this, consider the character map

χ : K(Perv(X)B)→ Z[W ]

defined by

χ([M]) =
∑
w∈W

∑
i∈Z

(−1)ihi(MwB/B) · w.

Notice that ∑
i∈Z

(−1)ihi(MwB/B)
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is the Euler characteristic of MwB/B , hence χ is a well-defined map out of K(Perv(X)B). Let us now consider
the images of [Mw] and [Lw] under this map.

Recall that Mw = CXow [dimXw], meaning that

(Mw)vB/B =

{
C[`(w)] v = w

0 otherwise,

which implies that
χ([Mw]) = (−1)`(w)w.

Therefore, χ sends a basis of K(Perv(X)B) to a basis of Z[W ], hence is an isomorphism.
On the other hand, recalling that Lw = IC(Xw), we see that

χ([Lw]) =
∑
v∈W

∑
i∈Z

(−1)ihi(IC(Xw)vB/B) · v

=
∑
v∈W

(−1)−`(w)Pv,w(−1) · v

=
∑
v∈W

(−1)`(v)−`(w)Pv,w(−1)χ([Mw]),

which shows that
[Lw] =

∑
v∈W

(−1)`(v)−`(w)Pv,w(−1)[Mw]

in K(Perv(X)B) because χ is an isomorphism. Translating back to the Grothendieck group of O−ρ, noting
that Pv,w(−1) = Pv,w(1) because Pv,w(q) has no non-zero coefficients in odd degrees, and recalling Pv,w = 0
for v > w, we obtain the desired

�(17) [L−wρ−ρ] =
∑
v≤w

(−1)`(v)−`(w)Pv,w(1) · [M−wρ−ρ].
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