QUANTUM HAMILTONIAN REDUCTION: PART 2

YI SUN

1. QUANTIZATION OF C[z1,y1,-- -, Tn, Yo"
1.1. A gl -action on differential operators. Recall the final result of the previous talk.

Corollary 1.1. Let Iy C A be the ideal generated by pg(g). Let x1,...,x; be a basis for g. If
to(x1),. .., po(zx) form a regular sequence in Ay, then for any A, the quantum reduction R(g, A,)\) is a
filtered quantization of the classical reduction R(G, M,0).

Fix G = GL,, g = gl,,, and h C g a fixed choice of Cartan. Let p : g — D(g x C") be the quantum
moment map given by differentiating the diagonal action of G on g x C" given by g- (z,i) = (gxg~',g-1). It
extends to a quantum moment map U(g) — D(g x C™) which has corresponding classical co-moment map
to : g — C[T*(g x C™)]. Recall from Barbara’s talk that at A = 0 the classical reduction along 1 is

R(G,T*(g ® C")) := C[h x h*]°".
Recall further that Barbara showed the following fact.
Proposition 1.2. The space M = {(A, B,i,j) | [A, B] +ij = 0} is a complete intersection.

The defining ideal of M in C[T™(g x C™)] is generated by po(g), so in this setting, Corollary 1.1 provides
a family of filtered quantizations R(g, D(g x C"), \) of C[h x h*]°» indexed by A € g/[g,g] ~ C.

Remark. Recall the (C*)?-action on T* (gxC™) given by (t1,t2)-(A, B,i,7) = (t; A, t5 ' B, t7 ", t5 ), which
descends via reduction to the natural (C*)2-action on Sym"™ (C?) which scales each coordinate. In our context,
it corresponds to the (C*)2-action on Dy (g x C") given by (t1,t2) - (A,0p,4,0;) = (t; ' A, t5 ' 0p, t7 Vi, t510;).

1.2. Identifying the quantum reduction. In the remainder of the talk, we determine the quantum
reduction R(g, D(g x C"),0) at A = 0 and identify it with D(h)°~. Observe that equipping D(h)*» with the
order filtration already makes it a filtered quantization of C[h x h*]~; the following theorem identifies the
two quantizations.

Theorem 1.3. The quantum reduction R(g, D(g ® C"),0) is isomorphic to D ().

We will prove Theorem 1.3 in two stages. First, we reduce to a setting which is more convenient for
explicit computation. Observe that 3 acts non-trivially only on the second variable in g x C™. This implies
that

D(g x C") = D(g) ® Clz;0;].
Define the quotient map 7 : D(g x C™)? — D(g).
Lemma 1.4. The map 7 factors through R(3, D(g x C"),0).
Proof. This holds because p(3) = span(}_, x;0;) C Clz;0;]. O
Lemma 1.4 gives a map R(3, D(g x C™),0) — D(g) of g/3-modules which induces a map
™ : R(g, D(g x C"),0) ~ R(g, R(3, D(g x C"),0),0) — R(g, D(g),0)

between their g-reductions. We will now construct a map ® : D(g)? — D(h*&)W | for which we recall the
following classical facts.

Lemma 1.5. The restriction map ¢ : C[g] — C[bh] induces an isomorphism C[g]® ~ C[p]".
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We obtain a map ® : D(g)® — D(5*8)" as follows. By Lemma 1.5, we obtain an action of D(g)? on
C[g]® ~ C[p]". The map @ is defined as the composition of this action with the map Der(C[p]", C[h]") —
D(hee)W. For f € C[h*e]V, a lift f € ¢~ 1(C[h™8]V) so that ¢(f) = f, and D € D(g x C™)8, this action
satisfies
(1) ®(D)(f) = ¢(D(f))-

Now, define the map B
d=d(x)odod(zx) "
to be the conjugation of ® by §(z) = [Tosola, z).
Proposition 1.6. The map ® factors through a map ¥ : R(g, D(g),0) — D(h*&)W.

Proof. Because ® is the composition of ® and conjugation by d(z), it suffices to check that ® kills (D(g)u(z))®.
This follows by (1) and the fact that (u(z) - f)(y) = Oz, f(y) = 0 for any f € D(g)?. O

We now claim that the image of ¥ o 7 lies in D(f))W. The proof relies on two technical lemmas, whose
proofs we postpone until the end of the notes.

Lemma 1.7. The image of the Laplacian Ay = .82 for {z} an orthonormal basis of g is given by
D(Ag) = Ay.

Lemma 1.8. The Poisson algebra C[h x h*]" is generated by C[h]" and po = >, y? € C[h*]".
Proposition 1.9. The image of ¥ o lies in D(h)" C D(p&)V.

Proof. The proposition follows from the following three steps. First, the restriction of o7 to Clg|® coincides
with the identification of the Chevalley isomorphism, so the proposition holds on C[g]?. Second, by Lemma
1.7 the proposition holds for the Laplacian Ay ® 1. Finally, the top degree terms of C[g]? and Ay ® 1
generate gr R(g, D(g x C"),0) = C[h x h*]" as a Poisson algebra by Lemma 1.8, so C[g]? and Ay ® 1
generate R(g, D(g x C"),0), yielding the conclusion. O

Proof of Theorem 1.3. We must check that the composition

Wom: R(g,D(g x C"),0) — R(g, D(g),0) = D(h)"
is an isomorphism. By construction it is compatible with the order filtration on both sides, so it suffices to
check that the Poisson map C[h x h*]" — C[h x h*]" given by the associated graded is the identity. On
gr(Clg]?) ~ C[h]", this follows from the fact that ® is simply the Chevalley isomorphism on C[g]®. For

p2 = Y., 47, this follows because ¥(m(Ay ® 1)) = ¥(A,) = Ay by Lemma 1.7. The conclusion follows by
Lemma 1.8. 0

1.3. A few technical proofs of lemmas.

Proof of Lemma 1.8. Define the mixed power sum p,p := >, z¢y?, and let V,, := span{p,s | a + b = n}.
For ps = po,2 and g2 = pa o, notice that

{p27pa,b} = aPg—1,b+1 and {qQ,pa,b} = bpa+1,b—17

which shows that ps, g2, and ha(pap) = (@ — b)p,,, form an irreducible representation of sly on V,,. For each
n, by the given we see that p, ¢ lies in the desired Poisson span, so we conclude that all of V,, does. In
particular, each p, p lies in the span.

We now claim that p, ; generate C[h x h*]" = Sym"™(C[z, y]) as an associative algebra. This follows from
Lemma 1.10 below applied to A = C[z,y]. O

Lemma 1.10. For any C-algebra A, elements of the form
s(a) = Z 190~ g g © 199

generate Sym" (A).

Proof. As a vector space, Sym”™(A) is spanned by elements of the form a®™ for a € A. Therefore, it suffices to
check the conclusion for A = C[z], where it reduces to the statement that the ring of symmetric polynomials
in x1,...,x, is generated by the power sums in x1,...,Z,. |
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Proof of Lemma 1.7. The proof is by explicit computation. First, notice that

Ag = (Zfﬂ +2% 0,0 )

a>0

for (eq, fo) = 1. For fe Clg x (C"]EJ so that (b(f) = f, we see that

Zaz 7230 (9e.0.7)

a>0
We may compute

Oe, Of, (@) = 0005l 1=s=0 f (& + tfo + 5€4)
= 8ts\t:s:of(Ademm—1ea (x+ tfa + sea)>
= ats\tzszof(a: ¥ tfa + tsa(z) tha + o2, 52, ts))
= a(z)"'on, f(z)
for ho = [eq, fa]. Putting everything together yields
B(Ag)(f) = S(Ag(1) = Agf +23 ) dh [

a>0
Observe also that

3(x) T Ag(8(x) f) = Ay (f) +6(x) Ay (4 f+Z5 )71 05, (8(2))0a, (f)

licj
=Ny f+ ) 0 f Z
- 7 T xj
=Dpf+2) a(e) o, f,
a>0
where Apd(z) = 0 because it is a W-antisymmetric polynomial of smaller degree than §(z). Conjugating
this by d(x) shows that ®(Ay) = Ay. O
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