
QUANTUM HAMILTONIAN REDUCTION: PART 2

YI SUN

1. Quantization of C[x1, y1, . . . , xn, yn]Sn

1.1. A gln-action on differential operators. Recall the final result of the previous talk.

Corollary 1.1. Let I0 ⊂ A0 be the ideal generated by µ0(g). Let x1, . . . , xk be a basis for g. If
µ0(x1), . . . , µ0(xk) form a regular sequence in A0, then for any λ, the quantum reduction R(g, A, λ) is a
filtered quantization of the classical reduction R(G,M, 0).

Fix G = GLn, g = gln, and h ⊂ g a fixed choice of Cartan. Let µ : g → D(g × Cn) be the quantum
moment map given by differentiating the diagonal action of G on g×Cn given by g · (x, i) = (gxg−1, g · i). It
extends to a quantum moment map U(g) → D(g × Cn) which has corresponding classical co-moment map
µ0 : g→ C[T ∗(g× Cn)]. Recall from Barbara’s talk that at λ = 0 the classical reduction along µ0 is

R(G,T ∗(g⊕ Cn)) := C[h× h∗]Sn .

Recall further that Barbara showed the following fact.

Proposition 1.2. The space M = {(A,B, i, j) | [A,B] + ij = 0} is a complete intersection.

The defining ideal ofM in C[T ∗(g×Cn)] is generated by µ0(g), so in this setting, Corollary 1.1 provides
a family of filtered quantizations R(g, D(g× Cn), λ) of C[h× h∗]Sn indexed by λ ∈ g/[g, g] ' C.

Remark. Recall the (C∗)2-action on T ∗(g×Cn) given by (t1, t2)·(A,B, i, j) = (t−11 A, t−12 B, t−11 i, t−12 j), which
descends via reduction to the natural (C∗)2-action on Symn(C2) which scales each coordinate. In our context,
it corresponds to the (C∗)2-action on D~(g×Cn) given by (t1, t2) · (A, ∂B , i, ∂j) = (t−11 A, t−12 ∂B , t

−1
1 i, t−12 ∂j).

1.2. Identifying the quantum reduction. In the remainder of the talk, we determine the quantum
reduction R(g, D(g×Cn), 0) at λ = 0 and identify it with D(h)Sn . Observe that equipping D(h)Sn with the
order filtration already makes it a filtered quantization of C[h × h∗]Sn ; the following theorem identifies the
two quantizations.

Theorem 1.3. The quantum reduction R(g, D(g⊕ Cn), 0) is isomorphic to D(h)Sn .

We will prove Theorem 1.3 in two stages. First, we reduce to a setting which is more convenient for
explicit computation. Observe that z acts non-trivially only on the second variable in g× Cn. This implies
that

D(g× Cn)z = D(g)⊗ C[xi∂j ].

Define the quotient map π̃ : D(g× Cn)z → D(g).

Lemma 1.4. The map π̃ factors through R(z, D(g× Cn), 0).

Proof. This holds because µ(z) = span(
∑
i xi∂i) ⊂ C[xi∂j ]. �

Lemma 1.4 gives a map R(z, D(g× Cn), 0)→ D(g) of g/z-modules which induces a map

π : R(g, D(g× Cn), 0) ' R(g, R(z, D(g× Cn), 0), 0)→ R(g, D(g), 0)

between their g-reductions. We will now construct a map Φ : D(g)g → D(hreg)W , for which we recall the
following classical facts.

Lemma 1.5. The restriction map φ : C[g]→ C[h] induces an isomorphism C[g]G ' C[h]W .
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We obtain a map Φ̃ : D(g)g → D(hreg)W as follows. By Lemma 1.5, we obtain an action of D(g)g on

C[g]g ' C[h]W . The map Φ̃ is defined as the composition of this action with the map Der(C[h]W ,C[h]W )→
D(hreg)W . For f ∈ C[hreg]W , a lift f̃ ∈ φ−1(C[hreg]W ) so that φ(f̃) = f , and D ∈ D(g × Cn)g, this action
satisfies

(1) Φ̃(D)(f) = φ(D(f̃)).

Now, define the map

Φ = δ(x) ◦ Φ̃ ◦ δ(x)−1

to be the conjugation of Φ̃ by δ(x) =
∏
α>0(α, x).

Proposition 1.6. The map Φ factors through a map Ψ : R(g, D(g), 0)→ D(hreg)W .

Proof. Because Φ is the composition of Φ̃ and conjugation by δ(x), it suffices to check that Φ̃ kills (D(g)µ(x))g.
This follows by (1) and the fact that (µ(x) · f)(y) = ∂[x,y]f(y) = 0 for any f ∈ D(g)g. �

We now claim that the image of Ψ ◦ π lies in D(h)W . The proof relies on two technical lemmas, whose
proofs we postpone until the end of the notes.

Lemma 1.7. The image of the Laplacian ∆g =
∑
i ∂

2
zi for {zi} an orthonormal basis of g is given by

Φ(∆g) = ∆h.

Lemma 1.8. The Poisson algebra C[h× h∗]W is generated by C[h]W and p2 =
∑
i y

2
i ∈ C[h∗]W .

Proposition 1.9. The image of Ψ ◦ π lies in D(h)W ⊂ D(hreg)W .

Proof. The proposition follows from the following three steps. First, the restriction of Ψ◦π to C[g]g coincides
with the identification of the Chevalley isomorphism, so the proposition holds on C[g]g. Second, by Lemma
1.7 the proposition holds for the Laplacian ∆g ⊗ 1. Finally, the top degree terms of C[g]g and ∆g ⊗ 1
generate grR(g, D(g × Cn), 0) = C[h × h∗]W as a Poisson algebra by Lemma 1.8, so C[g]g and ∆g ⊗ 1
generate R(g, D(g× Cn), 0), yielding the conclusion. �

Proof of Theorem 1.3. We must check that the composition

Ψ ◦ π : R(g, D(g× Cn), 0)→ R(g, D(g), 0)→ D(h)W

is an isomorphism. By construction it is compatible with the order filtration on both sides, so it suffices to
check that the Poisson map C[h × h∗]W → C[h × h∗]W given by the associated graded is the identity. On
gr(C[g]g) ' C[h]W , this follows from the fact that Φ is simply the Chevalley isomorphism on C[g]g. For
p2 =

∑
i y

2
i , this follows because Ψ(π(∆g ⊗ 1)) = Ψ(∆g) = ∆h by Lemma 1.7. The conclusion follows by

Lemma 1.8. �

1.3. A few technical proofs of lemmas.

Proof of Lemma 1.8. Define the mixed power sum pa,b :=
∑
i x

a
i y
b
i , and let Vn := span{pa,b | a + b = n}.

For p2 = p0,2 and q2 = p2,0, notice that

{p2, pa,b} = apa−1,b+1 and {q2, pa,b} = bpa+1,b−1,

which shows that p2, q2, and h2(pa,b) = (a− b)pa,b form an irreducible representation of sl2 on Vn. For each
n, by the given we see that pn,0 lies in the desired Poisson span, so we conclude that all of Vn does. In
particular, each pa,b lies in the span.

We now claim that pa,b generate C[h× h∗]W = Symn(C[x, y]) as an associative algebra. This follows from
Lemma 1.10 below applied to A = C[x, y]. �

Lemma 1.10. For any C-algebra A, elements of the form

s(a) =
∑
i

1⊗(i−1) ⊗ a⊗ 1⊗(n−i)

generate Symn(A).

Proof. As a vector space, Symn(A) is spanned by elements of the form a⊗n for a ∈ A. Therefore, it suffices to
check the conclusion for A = C[x], where it reduces to the statement that the ring of symmetric polynomials
in x1, . . . , xn is generated by the power sums in x1, . . . , xn. �
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Proof of Lemma 1.7. The proof is by explicit computation. First, notice that

∆g =

(∑
i

∂2xi + 2
∑
α>0

∂fα∂eα

)
for (eα, fα) = 1. For f̃ ∈ C[g× Cn]g so that φ(f̃) = f , we see that

φ(∆g(f̃)) =
∑
i

∂2xif + 2
∑
α>0

φ
(
∂eα∂fα f̃

)
.

We may compute

∂eα∂fα f̃(x) = ∂t∂s|t=s=0f̃(x+ tfα + seα)

= ∂ts|t=s=0f̃
(

Adesα(x)−1eα (x+ tfα + seα)
)

= ∂ts|t=s=0f̃
(
x+ tfα + tsα(x)−1hα + o(t2, s2, ts)

)
= α(x)−1∂hαf(x)

for hα = [eα, fα]. Putting everything together yields

Φ̃(∆g)(f) = φ(∆g(f̃)) = ∆hf + 2
∑
α>0

α(x)−1∂hαf.

Observe also that

δ(x)−1∆h(δ(x)f) = ∆h(f) + δ(x)−1∆h(δ(x)) · f +
∑
i

δ(x)−1∂xi(δ(x))∂xi(f)

= ∆hf +
∑
i

∂xif
∑
j 6=i

(−1)1i<j

xi − xj

= ∆hf + 2
∑
α>0

α(x)−1∂hαf,

where ∆hδ(x) = 0 because it is a W -antisymmetric polynomial of smaller degree than δ(x). Conjugating
this by δ(x) shows that Φ(∆g) = ∆h. �
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