QUANTUM HAMILTONIAN REDUCTION: PART 2

YI SUN

1. QUANTIZATION OF $\mathbb{C}[x_1, y_1, \dots, x_n, y_n]^{S_n}$

1.1. A \mathfrak{gl}_n -action on differential operators. Recall the final result of the previous talk.

Corollary 1.1. Let $I_0 \subset A_0$ be the ideal generated by $\mu_0(\mathfrak{g})$. Let x_1, \ldots, x_k be a basis for \mathfrak{g} . If $\mu_0(x_1), \ldots, \mu_0(x_k)$ form a regular sequence in A_0 , then for any λ , the quantum reduction $R(\mathfrak{g}, A, \lambda)$ is a filtered quantization of the classical reduction R(G, M, 0).

Fix $G = \operatorname{GL}_n$, $\mathfrak{g} = \mathfrak{gl}_n$, and $\mathfrak{h} \subset \mathfrak{g}$ a fixed choice of Cartan. Let $\mu : \mathfrak{g} \to D(\mathfrak{g} \times \mathbb{C}^n)$ be the quantum moment map given by differentiating the diagonal action of G on $\mathfrak{g} \times \mathbb{C}^n$ given by $g \cdot (x, i) = (gxg^{-1}, g \cdot i)$. It extends to a quantum moment map $U(\mathfrak{g}) \to D(\mathfrak{g} \times \mathbb{C}^n)$ which has corresponding classical co-moment map $\mu_0 : \mathfrak{g} \to \mathbb{C}[T^*(\mathfrak{g} \times \mathbb{C}^n)]$. Recall from Barbara's talk that at $\lambda = 0$ the classical reduction along μ_0 is

$$R(G, T^*(\mathfrak{g} \oplus \mathbb{C}^n)) := \mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^{S_n}.$$

Recall further that Barbara showed the following fact.

Proposition 1.2. The space $\mathcal{M} = \{(A, B, i, j) \mid [A, B] + ij = 0\}$ is a complete intersection.

The defining ideal of \mathcal{M} in $\mathbb{C}[T^*(\mathfrak{g} \times \mathbb{C}^n)]$ is generated by $\mu_0(\mathfrak{g})$, so in this setting, Corollary 1.1 provides a family of filtered quantizations $R(\mathfrak{g}, D(\mathfrak{g} \times \mathbb{C}^n), \lambda)$ of $\mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^{S_n}$ indexed by $\lambda \in \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}] \simeq \mathbb{C}$.

Remark. Recall the $(\mathbb{C}^*)^2$ -action on $T^*(\mathfrak{g} \times \mathbb{C}^n)$ given by $(t_1, t_2) \cdot (A, B, i, j) = (t_1^{-1}A, t_2^{-1}B, t_1^{-1}i, t_2^{-1}j)$, which descends via reduction to the natural $(\mathbb{C}^*)^2$ -action on $\operatorname{Sym}^n(\mathbb{C}^2)$ which scales each coordinate. In our context, it corresponds to the $(\mathbb{C}^*)^2$ -action on $D_{\hbar}(\mathfrak{g} \times \mathbb{C}^n)$ given by $(t_1, t_2) \cdot (A, \partial_B, i, \partial_j) = (t_1^{-1}A, t_2^{-1}\partial_B, t_1^{-1}i, t_2^{-1}\partial_j)$.

1.2. Identifying the quantum reduction. In the remainder of the talk, we determine the quantum reduction $R(\mathfrak{g}, D(\mathfrak{g} \times \mathbb{C}^n), 0)$ at $\lambda = 0$ and identify it with $D(\mathfrak{h})^{S_n}$. Observe that equipping $D(\mathfrak{h})^{S_n}$ with the order filtration already makes it a filtered quantization of $\mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^{S_n}$; the following theorem identifies the two quantizations.

Theorem 1.3. The quantum reduction $R(\mathfrak{g}, D(\mathfrak{g} \oplus \mathbb{C}^n), 0)$ is isomorphic to $D(\mathfrak{h})^{S_n}$.

We will prove Theorem 1.3 in two stages. First, we reduce to a setting which is more convenient for explicit computation. Observe that \mathfrak{z} acts non-trivially only on the second variable in $\mathfrak{g} \times \mathbb{C}^n$. This implies that

$$D(\mathfrak{g} \times \mathbb{C}^n)^{\mathfrak{z}} = D(\mathfrak{g}) \otimes \mathbb{C}[x_i \partial_j].$$

Define the quotient map $\widetilde{\pi}: D(\mathfrak{g} \times \mathbb{C}^n)^{\mathfrak{z}} \to D(\mathfrak{g}).$

Lemma 1.4. The map $\widetilde{\pi}$ factors through $R(\mathfrak{z}, D(\mathfrak{g} \times \mathbb{C}^n), 0)$.

Proof. This holds because $\mu(\mathfrak{z}) = \operatorname{span}(\sum_i x_i \partial_i) \subset \mathbb{C}[x_i \partial_j].$

Lemma 1.4 gives a map $R(\mathfrak{z}, D(\mathfrak{g} \times \mathbb{C}^n), 0) \to D(\mathfrak{g})$ of $\mathfrak{g}/\mathfrak{z}$ -modules which induces a map

$$\pi: R(\mathfrak{g}, D(\mathfrak{g} \times \mathbb{C}^n), 0) \simeq R(\mathfrak{g}, R(\mathfrak{z}, D(\mathfrak{g} \times \mathbb{C}^n), 0), 0) \to R(\mathfrak{g}, D(\mathfrak{g}), 0)$$

between their \mathfrak{g} -reductions. We will now construct a map $\Phi: D(\mathfrak{g})^{\mathfrak{g}} \to D(\mathfrak{h}^{\mathrm{reg}})^W$, for which we recall the following classical facts.

Lemma 1.5. The restriction map $\phi : \mathbb{C}[\mathfrak{g}] \to \mathbb{C}[\mathfrak{h}]$ induces an isomorphism $\mathbb{C}[\mathfrak{g}]^G \simeq \mathbb{C}[\mathfrak{h}]^W$.

Date: February 28, 2014.

YI SUN

We obtain a map $\widetilde{\Phi} : D(\mathfrak{g})^{\mathfrak{g}} \to D(\mathfrak{h}^{\mathrm{reg}})^W$ as follows. By Lemma 1.5, we obtain an action of $D(\mathfrak{g})^{\mathfrak{g}}$ on $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}} \simeq \mathbb{C}[\mathfrak{h}]^W$. The map $\widetilde{\Phi}$ is defined as the composition of this action with the map $\mathrm{Der}(\mathbb{C}[\mathfrak{h}]^W, \mathbb{C}[\mathfrak{h}]^W) \to D(\mathfrak{h}^{\mathrm{reg}})^W$. For $f \in \mathbb{C}[\mathfrak{h}^{\mathrm{reg}}]^W$, a lift $\widetilde{f} \in \phi^{-1}(\mathbb{C}[\mathfrak{h}^{\mathrm{reg}}]^W)$ so that $\phi(\widetilde{f}) = f$, and $D \in D(\mathfrak{g} \times \mathbb{C}^n)^{\mathfrak{g}}$, this action satisfies

(1)
$$\widetilde{\Phi}(D)(f) = \phi(D(\widetilde{f})).$$

Now, define the map

$$\Phi = \delta(x) \circ \widetilde{\Phi} \circ \delta(x)^{-1}$$

to be the conjugation of $\widetilde{\Phi}$ by $\delta(x) = \prod_{\alpha>0} (\alpha, x)$.

Proposition 1.6. The map Φ factors through a map $\Psi : R(\mathfrak{g}, D(\mathfrak{g}), 0) \to D(\mathfrak{h}^{\mathrm{reg}})^W$.

Proof. Because Φ is the composition of $\widetilde{\Phi}$ and conjugation by $\delta(x)$, it suffices to check that $\widetilde{\Phi}$ kills $(D(\mathfrak{g})\mu(x))^{\mathfrak{g}}$. This follows by (1) and the fact that $(\mu(x) \cdot f)(y) = \partial_{[x,y]}f(y) = 0$ for any $f \in D(\mathfrak{g})^{\mathfrak{g}}$.

We now claim that the image of $\Psi \circ \pi$ lies in $D(\mathfrak{h})^W$. The proof relies on two technical lemmas, whose proofs we postpone until the end of the notes.

Lemma 1.7. The image of the Laplacian $\Delta_{\mathfrak{g}} = \sum_{i} \partial_{z_i}^2$ for $\{z_i\}$ an orthonormal basis of \mathfrak{g} is given by $\Phi(\Delta_{\mathfrak{g}}) = \Delta_{\mathfrak{h}}$.

Lemma 1.8. The Poisson algebra $\mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^W$ is generated by $\mathbb{C}[\mathfrak{h}]^W$ and $p_2 = \sum_i y_i^2 \in \mathbb{C}[\mathfrak{h}^*]^W$.

Proposition 1.9. The image of $\Psi \circ \pi$ lies in $D(\mathfrak{h})^W \subset D(\mathfrak{h}^{reg})^W$.

Proof. The proposition follows from the following three steps. First, the restriction of $\Psi \circ \pi$ to $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}}$ coincides with the identification of the Chevalley isomorphism, so the proposition holds on $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}}$. Second, by Lemma 1.7 the proposition holds for the Laplacian $\Delta_{\mathfrak{g}} \otimes 1$. Finally, the top degree terms of $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}}$ and $\Delta_{\mathfrak{g}} \otimes 1$ generate gr $R(\mathfrak{g}, D(\mathfrak{g} \times \mathbb{C}^n), 0) = \mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^W$ as a Poisson algebra by Lemma 1.8, so $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}}$ and $\Delta_{\mathfrak{g}} \otimes 1$ generate $R(\mathfrak{g}, D(\mathfrak{g} \times \mathbb{C}^n), 0)$, yielding the conclusion.

Proof of Theorem 1.3. We must check that the composition

$$\Psi \circ \pi : R(\mathfrak{g}, D(\mathfrak{g} \times \mathbb{C}^n), 0) \to R(\mathfrak{g}, D(\mathfrak{g}), 0) \to D(\mathfrak{h})^W$$

is an isomorphism. By construction it is compatible with the order filtration on both sides, so it suffices to check that the Poisson map $\mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^W \to \mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^W$ given by the associated graded is the identity. On $\operatorname{gr}(\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}}) \simeq \mathbb{C}[\mathfrak{h}]^W$, this follows from the fact that Φ is simply the Chevalley isomorphism on $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}}$. For $p_2 = \sum_i y_i^2$, this follows because $\Psi(\pi(\Delta_{\mathfrak{g}} \otimes 1)) = \Psi(\Delta_{\mathfrak{g}}) = \Delta_{\mathfrak{h}}$ by Lemma 1.7. The conclusion follows by Lemma 1.8.

1.3. A few technical proofs of lemmas.

Proof of Lemma 1.8. Define the mixed power sum $p_{a,b} := \sum_i x_i^a y_i^b$, and let $V_n := \operatorname{span}\{p_{a,b} \mid a+b=n\}$. For $p_2 = p_{0,2}$ and $q_2 = p_{2,0}$, notice that

$$\{p_2, p_{a,b}\} = ap_{a-1,b+1}$$
 and $\{q_2, p_{a,b}\} = bp_{a+1,b-1}$,

which shows that p_2 , q_2 , and $h_2(p_{a,b}) = (a-b)p_{a,b}$ form an irreducible representation of \mathfrak{sl}_2 on V_n . For each n, by the given we see that $p_{n,0}$ lies in the desired Poisson span, so we conclude that all of V_n does. In particular, each $p_{a,b}$ lies in the span.

We now claim that $p_{a,b}$ generate $\mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^W = \operatorname{Sym}^n(\mathbb{C}[x,y])$ as an associative algebra. This follows from Lemma 1.10 below applied to $A = \mathbb{C}[x,y]$.

Lemma 1.10. For any \mathbb{C} -algebra A, elements of the form

$$s(a) = \sum_{i} 1^{\otimes (i-1)} \otimes a \otimes 1^{\otimes (n-i)}$$

generate $\operatorname{Sym}^n(A)$.

Proof. As a vector space, $\text{Sym}^n(A)$ is spanned by elements of the form $a^{\otimes n}$ for $a \in A$. Therefore, it suffices to check the conclusion for $A = \mathbb{C}[x]$, where it reduces to the statement that the ring of symmetric polynomials in x_1, \ldots, x_n is generated by the power sums in x_1, \ldots, x_n .

Proof of Lemma 1.7. The proof is by explicit computation. First, notice that

$$\Delta_{\mathfrak{g}} = \left(\sum_{i} \partial_{x_i}^2 + 2\sum_{\alpha>0} \partial_{f_\alpha} \partial_{e_\alpha}\right)$$

for $(e_{\alpha}, f_{\alpha}) = 1$. For $\tilde{f} \in \mathbb{C}[\mathfrak{g} \times \mathbb{C}^n]^{\mathfrak{g}}$ so that $\phi(\tilde{f}) = f$, we see that

$$\phi(\Delta_{\mathfrak{g}}(\widetilde{f})) = \sum_{i} \partial_{x_{i}}^{2} f + 2 \sum_{\alpha > 0} \phi\left(\partial_{e_{\alpha}} \partial_{f_{\alpha}} \widetilde{f}\right).$$

We may compute

$$\begin{aligned} \partial_{e_{\alpha}}\partial_{f_{\alpha}}\tilde{f}(x) &= \partial_{t}\partial_{s}|_{t=s=0}\tilde{f}(x+tf_{\alpha}+se_{\alpha}) \\ &= \partial_{ts}|_{t=s=0}\tilde{f}\left(\operatorname{Ad}_{e^{s\alpha(x)^{-1}e_{\alpha}}}(x+tf_{\alpha}+se_{\alpha})\right) \\ &= \partial_{ts}|_{t=s=0}\tilde{f}\left(x+tf_{\alpha}+ts\alpha(x)^{-1}h_{\alpha}+o(t^{2},s^{2},ts)\right) \\ &= \alpha(x)^{-1}\partial_{h_{\alpha}}f(x) \end{aligned}$$

for $h_{\alpha} = [e_{\alpha}, f_{\alpha}]$. Putting everything together yields

$$\widetilde{\Phi}(\Delta_{\mathfrak{g}})(f) = \phi(\Delta_{\mathfrak{g}}(\widetilde{f})) = \Delta_{\mathfrak{h}}f + 2\sum_{\alpha>0}\alpha(x)^{-1}\partial_{h_{\alpha}}f$$

Observe also that

$$\begin{split} \delta(x)^{-1} \Delta_{\mathfrak{h}}(\delta(x)f) &= \Delta_{\mathfrak{h}}(f) + \delta(x)^{-1} \Delta_{\mathfrak{h}}(\delta(x)) \cdot f + \sum_{i} \delta(x)^{-1} \partial_{x_{i}}(\delta(x)) \partial_{x_{i}}(f) \\ &= \Delta_{\mathfrak{h}} f + \sum_{i} \partial_{x_{i}} f \sum_{j \neq i} \frac{(-1)^{1_{i < j}}}{x_{i} - x_{j}} \\ &= \Delta_{\mathfrak{h}} f + 2 \sum_{\alpha > 0} \alpha(x)^{-1} \partial_{h_{\alpha}} f, \end{split}$$

where $\Delta_{\mathfrak{h}}\delta(x) = 0$ because it is a *W*-antisymmetric polynomial of smaller degree than $\delta(x)$. Conjugating this by $\delta(x)$ shows that $\Phi(\Delta_{\mathfrak{g}}) = \Delta_{\mathfrak{h}}$.

References

- [1] P. Etingof, Lectures on Calogero-Moser systems (2005). Available at: http://arxiv.org/pdf/math/0606233v4.pdf
- [2] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, *Inventiones mathematicae* 147 (2002), pp. 243-348. Available at: http://arxiv.org/abs/math/0011114.
- [3] W. L. Gan and V. Ginzburg, Almost-commuting variety, D-modules, and Cherednik algebras, International Mathematics Research Papers 2006 (2005). Article ID 26439, pp 154. Available at: http://arxiv.org/abs/math/0409262.
- [4] I. Losev, Isomorphisms of quantizations via quantization of resolutions, Advances in Mathematics 231 (2012), pp. 1216-1270. Available at: http://arxiv.org/abs/1010.3182.
- [5] I. Losev, Lectures on symplectic reflection algebras (2012). Available at: http://www.northeastern.edu/iloseu/SRA/ SRA_lec14.pdf.

E-mail address: yisun@math.mit.edu