Grothendieck's simultaneous resolution and the Springer correspondence: Part 2

Yi Sun

September 16, 2013

1 Recap of last time

We first give a brief summary of where we left off in the last talk. We defined the Springer resolution $\pi : \tilde{\mathcal{N}} \to \mathcal{N}$, which fit into the commutative diagram

where $\pi : \tilde{\mathfrak{g}} \to \mathfrak{g}$ is Grothendieck's simultaneous resolution. Recalling that the Steinberg variety was defined as $Z = \tilde{\mathcal{N}} \times \tilde{\mathcal{N}}$ and using the fact that π is a *W*-covering over the semisimple regular locus $\mathfrak{g}_{sr} \subset \mathfrak{g}$, we constructed a map

$$\mathbb{C}[W] \to H^{BM}_{\dim_{\mathbb{P}} \widetilde{\mathcal{N}}}(Z)$$

which sends $w \in W$ to a class $[\Lambda_0^w]$ given as a certain specialization. The main result from last time was the following.

Theorem 1.1. The map

$$\mathbb{C}[W] \xrightarrow{\sim} H^{BM}_{\dim_{\mathbb{R}} \widetilde{\mathcal{N}}}(Z)$$

is an isomorphism of algebras.

2 Conclusion of the Springer correspondence

2.1 Realizing irreducible representations of W

Using Theorem 1.1, we now find a parametrization of all irreducible representations of W. Recall that for $\xi \in \mathcal{N}$, the *Springer fiber* \mathcal{B}_{ξ} is defined to be the fiber $\pi^{-1}(\xi) \subset \widetilde{\mathcal{N}}$ above ξ . Let $G(\xi)$ be the stabilizer of ξ and $C(\xi) = G(\xi)/G(\xi)^0$ the component group of $G(\xi)$. The main result is then the following theorem.

Theorem 2.1. The spaces $H_{2d_{\xi}}^{BM}(\mathcal{B}_{\xi})^{\chi}$ for $\chi \in \operatorname{Irred}(C(\xi))$ are all the irreducible representations of W.

We now discuss how to obtain this theorem from Theorem 1.1. Partially order the nilpotent orbits of \mathcal{N} by closure, and for such an orbit \mathcal{O} , let $Z_{<\mathcal{O}}$, $Z_{\mathcal{O}}$, and $Z_{\leq\mathcal{O}}$ be the corresponding preimages in Z. Note that

 $H^{BM}_{\dim_{\mathbb{R}}\mathcal{N}}(Z_{\leq \mathcal{O}})$ and $H^{BM}_{\dim_{\mathbb{R}}\mathcal{N}}(Z_{\leq \mathcal{O}})$ are both two-sided ideals in $H^{BM}_{\dim_{\mathbb{R}}\mathcal{N}}(Z)$. On the other hand, we know that $H^{BM}_{\dim_{\mathbb{R}}\mathcal{N}}(Z)$ is semisimple because it is isomorphic to $\mathbb{C}[W]$, so we obtain an isomorphism

$$H^{BM}_{\dim_{\mathbb{R}}\mathcal{N}}(Z) \simeq \bigoplus_{\mathcal{O}} H^{BM}_{\dim_{\mathbb{R}}\mathcal{N}}(Z_{\leq \mathcal{O}}) / H^{BM}_{\dim_{\mathbb{R}}\mathcal{N}}(Z_{< \mathcal{O}}) =: \bigoplus_{\mathcal{O}} H_{\mathcal{O}}.$$

Observe that $H_{\mathcal{O}} := H^{BM}_{\dim_{\mathbb{R}} \mathcal{N}}(Z_{\leq \mathcal{O}})/H^{BM}_{\dim_{\mathbb{R}} \mathcal{N}}(Z_{<\mathcal{O}})$ itself inherits a convolution algebra structure. Now, because $H^{BM}_{\dim_{\mathbb{R}} \mathcal{N}}(Z_{\leq \mathcal{O}})$ and $H^{BM}_{\dim_{\mathbb{R}} \mathcal{N}}(Z_{<\mathcal{O}})$ each have bases given by fundamental classes of the irreducible components of their respective spaces, $H_{\mathcal{O}}$ has a basis given by the fundamental classes of the irreducible components of $Z_{\mathcal{O}}$.

Recall that $Z_{\mathcal{O}}$ is a *G*-equivariant fiber bundle over \mathcal{O} with fiber $\mathcal{B}_{\xi} \times \mathcal{B}_{\xi}$ over $\xi \in \mathcal{O}$; in addition, its irreducible components are the *G*-orbits of the orbits of $C(\xi) = G(\xi)/G(\xi)^0$ on pairs of irreducible components of \mathcal{B}_{ξ} .

Proposition 2.2. We have an algebra isomorphism

$$H_{\mathcal{O}} \simeq \operatorname{End}_{C(\xi)}(H^{BM}_{2d_{\xi}}(\mathcal{B}_{\xi})),$$

where $d_{\xi} = \dim \pi^{-1}(\mathcal{O}_{\xi}) - \dim \mathcal{O}_{\xi}$.

Proof. The convolution structure of $H_{\mathcal{O}}$ acts fiberwise, so the characterization of the irreducible components of $Z_{\mathcal{O}}$ implies that

$$H_{\mathcal{O}} \simeq H_{4d_{\varepsilon}}^{BM} (\mathcal{B}_{\xi} \times B_{\xi})^{C(\xi)}.$$

Now, the Kunneth isomorphism and the fact that $H_{2d_{\xi}}^{BM}(\mathcal{B}_{\xi})_{L} \simeq H_{2d_{\xi}}^{BM}(\mathcal{B}_{\xi})_{R}^{\vee}$ as $H_{\mathcal{O}}$ -modules (where the L and R denote the left and right action) implies that

$$H^{BM}_{4d_{\xi}}(\mathcal{B}_{\xi} \times B_{\xi})^{C(\xi)} \simeq (H_{2d_{\xi}}(\mathcal{B}_{\xi})_{L} \otimes H^{BM}_{2d_{\xi}}(\mathcal{B}_{\xi})_{L}^{\vee})^{C(\xi)} \simeq \operatorname{End}_{C(\xi)}(H^{BM}_{2d_{\xi}}(\mathcal{B}_{\xi})_{L})$$

where we note that the first identification is on the level of $H_{\mathcal{O}}$ -bimodules.

We conclude formally from Proposition 2.2 and our previous analysis the following characterization of all irreducible representations of W.

Proof of Theorem 2.1. We have the chain of isomorphisms

$$\mathbb{C}[W] \simeq H^{BM}_{\dim_{\mathbb{R}}\mathcal{N}}(Z) \simeq \bigoplus_{\mathcal{O}} H_{\mathcal{O}} \simeq \bigoplus_{\mathcal{O}} \operatorname{End}_{C(\xi)}(H^{BM}_{2d_{\xi}}(\mathcal{B}_{\xi})_{L}) = \bigoplus_{\mathcal{O},\chi} \operatorname{End}_{\mathbb{C}}(H^{BM}_{2d_{\xi}}(\mathcal{B}_{\xi})^{\chi}),$$

where $H_{2d_{\xi}}^{BM}(\mathcal{B}_{\xi})^{\chi}$ is the χ -isotypic subspace of $H_{2d_{\xi}}^{BM}(\mathcal{B}_{\xi})$.

Remark. For $G = GL_n$, it turns out that $C(\xi)$ is trivial, which shows that the irreducible representations of $W = S_{n-1}$ correspond to nilpotent orbits. Such orbits are parametrized by the structure of the Jordan blocks of their orbits, which correspond to partitions of n-1. Thus we recover the classical classification of representations of the symmetric group.

Let us see $H_{2d_{\xi}}^{BM}(\mathcal{B}_{\xi})$ explicitly in some cases. Assume that $G = GL_n$, so that $C(\xi)$ is always trivial.

- If ξ is regular nilpotent, then \mathcal{B}_{ξ} is a point, hence $H^{BM}_{2d_{\xi}}(\mathcal{B}_{\xi})$ corresponds to the trivial representation.
- If $\xi = 0$, then \mathcal{B}_{ξ} is the entire flag variety, which is a single irreducible component, hence $H_{2d_{\xi}}^{BM}(\mathcal{B}_{\xi})$ is one-dimensional. The action of W is then the sign representation.
- If ξ has Jordan type (n-1,1), then \mathcal{B}_{ξ} consists of (n-1) copies of \mathbb{P}^1 connected sequentially, corresponding to the Dynkin diagram of type A_{n-1} . The action of W yields the (n-1)-dimensional irreducible subrepresentation of the permutation representation of S_n , where each reflection acts by exchanging the corresponding \mathbb{P}^1 's.

References

- [1] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhauser, 1997.
- [2] D. Clausen, The Springer correspondence, Harvard Senior Thesis, 2008.
- [3] M. de Cataldo and L. Migliorini, The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bulletin of the American Mathematical Society, **46** (2009), no. 4, 535-633.
- [4] T. A. Springer, Quelques applications de la cohomologie d'intersection, Séminaire Bourbaki, 24 (1981-1982), Exp. No. 589, 25 p.