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1 An interpretation in terms of perverse sheaves

1.1 Small and semismall maps

Let f : X → Y be a proper surjective map of varieties with X nonsingular. We say that a decomposition
of Y =

⊔
k Sk into finitely many non-singular locally closed subvarieties Sk is a stratification relative to f if

each restriction f : f−1(Sk)→ Sk is a topological locally trivial fibration.

Proposition 1.1. The following conditions are equivalent.

(a) Rf∗CX [dimX] is a perverse sheaf on Y ,

(b) dimX ×
Y
X ≤ dimX, or

(c) dimSk + 2(dim f−1(Sk)− dimSk) ≤ dimX for all k.

We say that f is semismall if any of the conditions in Proposition 1.1 hold and small if the inequality in
(c) is strict for all strata Sk which are not dense in Y . Call a stratum relevant if equality holds in (c).

Proposition 1.2. If f is small, then
Rf∗CX [n] = IC(Y,L),

where L = Rf∗CX |Y0 is the restriction of the (derived) push-forward to the open stratum.

For small and semismall maps, the Decomposition theorem takes on the following especially nice form.

Theorem 1.3 (Decomposition theorem). If f : X → Y is semismall, then

Rf∗CX [dimX] =
⊕
k

IC(Sk,Lk),

where the sum is over relevant strata Sk and local systems Lk on Sk.

1.2 Semismallness of the Springer resolution

Let us see how these results apply to our situation. Depending on the context, the map π will be either
small or semismall.

Proposition 1.4. The Springer map π : Ñ → N admits a stratification by G-orbits under the adjoint
action. Relative to this stratification, π is semismall, and every orbit is a relevant stratum.

Proof. Let O be a nilpotent orbit in N and ξ ∈ O an element. It is clear that Õ → O is a fibration with
fiber Bξ, so nilpotent orbits give a valid stratification. Now, Ñ is smooth, and π is evidently proper and
surjective. Some dimension estimates from our first talk together imply that

dimO + 2 dimBx = dimZO = dimN ,

so we conclude that π is semi-small and that each stratum is relevant.
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Proposition 1.5. The simultaneous resolution π : g̃→ g is small.

Proof. Again, π is proper surjective with g̃ smooth, so it suffices to verify the dimension condition (c) for
some stratification. Let gn ⊂ g be

gn = {x ∈ g | dimBx = n}.

Take a stratification of g which is a possible refinement of

g = gsr ∪ (g0 − gsr) ∪
⋃
n≥1

gn

which makes π : g̃→ g a fibration above each stratum. On gsr, π is a |W |-to-1 cover, so (c) follows trivially.
For any other stratum S ⊂ gn, we see that

dimS + n = dimπ−1(S) = dimB + dim(S ∩ b),

hence
dimS + 2n = dimB + dim(S ∩ b) + n.

On the other hand, we see that

dim(S ∩ b) + n = dim(S ∩ b)×
g
g̃ < dim b×

g
g̃,

where the strict inequality is because S is not the dense stratum. Thus, to show smallness, it suffices to
check that

dim b×
g
g̃ = dim b.

For this, observe that
b×

g
g̃ = {(x, b′) | x ∈ b, x ∈ b′},

so the second projection equips it with a map to B. Its pullback over each Schubert cell X(w) = BwB/B ⊂ B
is given by

{(x, gB) | x ∈ b ∩ adg(b), gB ∈ BwB},

so it suffices to check that dim b ∩ adg(b) + dimX(w) = dim b, which is true because b ∩ adg(b) is the Lie
algebra of the stabilizer of the B-action on X(w).

1.3 Action on the derived pushforward

Because π : g̃→ g is small, we obtain that

Rπ∗Cg̃[dim g] = IC(g,L),

where L is the local system
L = Rπ∗Cg̃[dim g]

∣∣
gsr

= Rπ∗Cg̃sr
[dim g].

Recall that g̃sr is a |W |-fold covering of gsr and therefore Cg̃sr
comes equipped with a W -action. By functo-

riality, this yields a W -action on L and hence Rπ∗Cg̃[dim g]. We now degenerate this action to π : Ñ → N .

Because π is proper, by base change on the inclusions i : N → g and ĩ : Ñ → g̃, we have that

i∗Rπ∗Cg̃[dim g] = Rπ∗ĩ
∗Cg̃[dim g] = Rπ∗CÑ [dim g],

so again by functoriality and dimension shift, we obtain a W -action on Rπ∗CÑ [dimN ].

Recall now that π : Ñ → N is semismall, so by the Decomposition theorem we have that

Rπ∗CÑ [dimN ] =
⊕
k

IC(Sk,Lk) (1)
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for some local systems Lk on strata Sk for which dimSk+2(dimπ−1(Sk)−dimSk) = dimN . By Proposition
1.4, N admits a stratification by nilpotent orbitsOξ; further, each simple local system Lξ,χ onOξ corresponds
to a monodromy representation χ of π1(Oξ). Letting Vξ,χ be the multiplicity space of χ in the monodromy
representation corresponding to Lξ, we obtain the decomposition

Rπ∗CÑ [dimN ] =
⊕

ξ,χ∈Irr(π1(Oξ))

IC(Oξ,Lξ,χ)⊗ Vξ,χ.

We may characterize the multiplicity spaces more explicitly by examining the fibers of Rπ∗CÑ [dimN ].

Proposition 1.6. For any nilpotent orbit Oξ, we have

HBM
2dξ

(Bξ) =
⊕
χ

Cχ ⊗ Vξ,χ,

where dξ = dimπ−1(Oξ)− dimOξ.

Proof. Choose ξ ∈ Oξ; taking the cohomology in degree −dimOξ of the stalks at ξ of (1) yields

H− dimOξ(Bξ,CBξ [dimN ]) = H− dimOξ(Rπ∗CÑ [dimN ]ξ) =
⊕
χ

(IC(Oξ,Lξ,χ)⊗ Vξ,χ)ξ =
⊕
χ

Cχ ⊗ Vξ,χ,

where we note that (Lξ′,χ)ξ = 0 unless Oξ ⊂ Oξ′ and that

H− dimOξ(Oξ, IC(Oξ′ ,Lξ′,χ′)) = 0

for Oξ ⊂ Oξ′ by the support conditions on IC sheaves.

Observe now that iξ : Bξ → Ñ is the inclusion of a fiber into the total space of the fibration Bξ → Oξ,
hence we see that i!ξ = i∗ξ [−2 dimOξ]. Thus, we find that

HBM
2dξ

(Bξ) = H−2dξ(Bξ, i!ξCÑ [2 dim Ñ ])

= H−2dξ(Bξ,CBξ [2 dim Ñ − 2 dimOξ]) = H− dimOξ(Bξ,CBξ [dimN ]).

Given this decomposition, the W -action on Rπ∗CÑ [dimN ] becomes a map

C[W ]→ End(Rπ∗CÑ [dimN ]) =
⊕
ξ,χ

End(Vξ,χ), (2)

where the equality follows because

End(IC(Oξ,Lξ,χ), IC(Oξ′ ,Lξ′,χ′)) =

{
0 (ξ, χ) 6= (ξ′, χ′)

C (ξ, χ) = (ξ′, χ′).

Theorem 1.7. The map (2) is an isomorphism of algebras. In particular, the multiplicity spaces Vξ,χ form
the complete set of irreducible representations of W .

Remark. Together, Proposition 1.6 and Theorem 1.7 imply that every irreducible representation of W is
a direct summand of HBM

2dξ
(Bξ) for some ξ ∈ N . Further, if Oξ is simply connected (which is the case for

W = Sn), then each HBM
2dξ

(Bξ) is itself irreducible.

Proof of Theorem 1.7. The proof consists of two steps. First, we show that (2) is injective. For this, observe
that taking stalks at 0 ∈ N and applying proper base change yields a map

C[W ]→ End((Rπ∗CN [dimN ])0) = End(Rπ∗CB)→ End(H∗(B,CB))
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where we note that B = B0 = π−1(0). Recall now that H∗(B,CB) is isomorphic to the regular representation
of W . We claim without proof that this action coincides with the action given by the map above, which
would show that the composition is injective.1

To finish, we note that π1(Oξ) ' C(ξ). Further, because HBM
2dξ

(Bξ) is top dimensional, it is generated by
the fundamental classes of the irreducible components of Bξ, and the orbits of the monodromy representation
of π1(Oξ) are exactly the orbits of the C(ξ) action on irreducible components. Recall by Proposition 1.6
that the irreducible components of ZOξ are in bijection with C(ξ)-orbits on pairs of irreducible components
of Bξ. By the orbit stabilizer theorem, the number of such pairs is

1

|C(ξ)|
∑

c∈C(ξ)

Fixc(Irred(Bξ))2 =
1

|C(ξ)|
∑

c∈C(ξ)

Tr|HBM2dξ
(Bξ)(c)

2 = ||chHBM2dξ
(Bξ)||

2 =
∑
χ

(dimVξ,χ)2.

Combining this with our classification of irreducible components of Z, we then have

|W | =
∑
ξ,χ

(dimVξ,χ)2,

which implies that C[W ] and End(Rπ∗CN [dimN ]) have the same dimension, so (2) is an isomorphism.

Proposition 1.8. The isomorphism of (2) is compatible with the isomorphism C[W ] ' HBM
dim Ñ

(Z).

Proof. We will give an isomorphism of vector spaces

HBM
dim Ñ (Z) ' End(Rπ∗CÑ [dim Ñ ])

but omit the proof that it is compatible with the algebra structure (which may be found in Chriss-Ginzburg
Chapter 8). Consider the Cartesian square

Z
i- Ñ × Ñ

N

π

? ∆- N ×N

π × π

?

Applying base change on this square and using Verdier duality, we have the chain of isomorphisms

HBM
dim Ñ (Z) ' H− dim Ñ (Z,D(Z))

' H0(Z, i!(CÑ [dim Ñ ] � CÑ [dim Ñ ]))

' H0(Z, i!(D(CÑ [dim Ñ ]) � CÑ [dim Ñ ]))

' H0(N , Rπ∗i!(D(CÑ [dim Ñ ]) � CÑ [dim Ñ ]))

' H0(N ,∆!R(π × π)∗(D(CÑ [dim Ñ ]) � CÑ [dim Ñ ]))

' H0(N ,∆!(Rπ∗(D(CÑ )) �Rπ∗(CÑ )))

' H0(N ,D(Rπ∗(CÑ ))⊗Rπ∗(CÑ ))

' End(Rπ∗(CÑ ), Rπ∗(CÑ )).

1Strictly speaking, this is cheating!
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