
Supplementary proofs for: Metric recovery from

directed unweighted graphs

January 25, 2015

Contents

1 Conjecture on uniform equicontinuity of the rescaled stationary
distribution 1

2 Full proof of Theorem 2.1 2
2.1 Definition of the objects . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Quantities used in the Stroock-Varadhan criterion . . . . . . . . 4
2.3 Statement of the Stroock-Varadhan criterion . . . . . . . . . . . 5
2.4 Verification of the Stroock-Varadhan conditions . . . . . . . . . . 7

2.4.1 Moment conditions . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 8

2.5 Completing the proof of Theorem S2.1 . . . . . . . . . . . . . . . 10

3 Generalizing to isotropic graphs 12

4 Recovery of distances via ball-radii 15
4.1 Outline of proof approach . . . . . . . . . . . . . . . . . . . . . . 15
4.2 The case of exact knowledge of εn. . . . . . . . . . . . . . . . . . 15
4.3 The case of stochastic estimates of εn . . . . . . . . . . . . . . . 17

1 Conjecture on uniform equicontinuity of the
rescaled stationary distribution

In the conditions (?) we imposed, we required the uniform equicontinuity of
nπXn . Without this condition, our proof technique implies the weak convergence∑

x∈Xn

πXn(x)δx → πY (x)dx

of the empirical stationary measures of Xn(t) to the stationary measure of Y (t).
The additional imposition of uniform equicontinuity was required solely to up-
grade this convergence to a convergence of the rescaled discrete density functions
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to the continuous density function. We conjecture that this continuity is true
in general.

Conjecture S1.1. Given the other continuity and scaling conditions on p(x)
and εn(x) in (?), nπXn(x) is a.s. uniformly equicontinuous.

We discuss a few reasons why we might believe this conjecture to hold.

• In the case of constant εn(x), nπXn(x) is proportional to |NBn(x)|, hence
converges to p(x) uniformly. The conjecture therefore holds in this case.

• Our empirical results produce robust results across a broad range of n,
ε(x), and p(x). One possible explanation would be that Conjecture S1.1
holds for all datasets constructed according to (?).

• For x, y ∈ Xn, let rn(x) denote the expected first return time to x and
cn(x, y) denote the expected commute time from x to y. It is known that

πXn(x) =
1

rn(x)
,

so to show that nπXn(x) is uniformly equicontinuous, it suffices to show
that n

rn(x)
is uniformly equicontinuous. Notice that

rn(x) ≤ cn(x, y) + rn(y) + cn(y, x)

and that
rn(y) ≤ cn(x, y) + rn(x) + cn(y, x),

which together imply that

|rn(x)− rn(y)| ≤ |cn(x, y) + cn(y, x)|.

This relates continuity of rn(x) and hence πXn(x) to the commute time
cn(x, y). On the other hand, our techniques using the Stroock-Varadhan
criterion yield convergence of the simple random walk Xn(t) to the Itô
process Y (t) in D([0,∞), D) without assumption of uniform equicontinu-
ity. In a scaling limit, this should lead to a relation between cn(x, y) and a
rescaling of the commute time of the corresponding Itô process. In future
work, we intend to use this result to relate a scaling of cn(x, y) to |x− y|
and approach Conjecture S1.1 in conjunction with new methods for metric
estimation.

2 Full proof of Theorem 2.1

The goal of this section will be to give a fully rigorous proof of Theorem 3.4
from the main text. We first restate the theorem as Theorem S2.1.
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Theorem S2.1. Under (?), if hn → g2n as n→∞, then a.s. in X , the process
Xn(bt/hnc) converges in D([0,∞), D) to the isotropic D-valued Itô process Y (t)
with reflecting boundary condition defined by

dY (t) =
∇p(Y (t))

3p(Y (t))
ε(Y (t))2dt+

ε(Y (t))√
3

dW (t), (1)

where the precise meaning of the reflecting boundary condition is given in Sub-
section 2.1.

Our technique is an application of the Stroock-Varadhan criterion (see [2,
Theorem 6.3]) for convergence of discrete time Markov processes in a bounded
domain to drift-diffusion processes with reflecting boundary conditions in that
domain. In what follows, we preserve the notation used by Stroock-Varadhan
in [2] whenever possible.

2.1 Definition of the objects

In this subsection, we recall in detail the problem setup. We are given an infinite
sequence X = {x1, x2, . . .} of latent coordinate points drawn independently
from a distribution with probability density p(x) in Rd supported on a compact
domain D ⊂ Rd with smooth boundary ∂D. We may then find a bounded C2

function φ(x) on Rd so that

D = {x | φ(x) > 0}, ∂D = {x | φ(x) = 0}, and |∇φ(x)| ≥ 1 on ∂D.

We fix a single random draw of X and analyze the quenched setting.
We are then given a radius function εn(xi) which may depend on the draw

of X and a scaling factor gn so that

lim
n→∞

g−1n εn(x) = ε(x)

for some deterministic ε(x) onD. LetGn = (Xn, En) be the unweighted directed
neighborhood graph with vertex set Xn = {x1, . . . , xn} and with a directed edge
from i to j if and only if

|xi − xj | < εn(xi).

Note that Gn is stochastic and depends on the specific realization of Xn which
is drawn.

Let Xn(t) be the simple random walk on the directed graph Gn so that
Xn(t) is a discrete-time Markov process with state space Xn. We normalize the
timestep of Xn(t) to be hn = g2n and identify Xn(t) with the continuous time
process given by t 7→ Xn(bt/hnc). From now on, we refer to these two processes
interchangeably.

In Theorem S2.1, we wish to show thatXn(t) converges weakly in D([0,∞), D)
to the continuous-time continuous-space Itô process Y (t) defined by (1) with re-
flecting boundary conditions. We interpret the boundary conditions in terms of
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the submartingale condition of [2]. That is, we define the vector function γ(s, x)
to be the normal vector to ∂D at x whose length is normalized so that

〈γ(s, x),∇φ(x)〉 = 1.

Take also the scalar function ρ(s, x) = 0. Together, γ and ρ specify the boundary
conditions in the following sense.

We say that a process Y (t) solves the submartingale problem for a, b, ρ, and
γ if for any function f ∈ C1,2

0 ([0,∞)×D) satisfying

ρ(∂f/∂t) + 〈γ,∇f〉 ≥ 0

on [0,∞)× ∂D, the random variable

f(t, Y (t))−
∫ t

0

(fs + Lsf)(s, Y (s)) 1D(Y (s))ds

is a submartingale, where

Lsf =
1

2

d∑
i,j=1

aij
∂2f

∂xi∂xj
+

d∑
j=1

bj
∂f

∂xj
.

As explained in [2], when ρ = 0, this formulation is equivalent to specifying that
Y (t) satisfies (1) on the interior of D and has reflecting boundary conditions on
∂D.

2.2 Quantities used in the Stroock-Varadhan criterion

We now define the moment and boundary quantities which are used in the
Stroock-Varadhan criterion. We follow the notations of [2]. Our discrete time
Markov process Xn(t) has time increment hn = g2n and transition kernel

Πn(x,A) = p(Xn(t+ 1) ∈ A|Xn(t) = x) =
|Xn ∩A ∩B(x, εn(x))|
|Xn ∩B(x, εn(x))|

for x ∈ Xn, where we recall that Xn ∩B(x, εn(x)) = NBn(x).
The moment quantities in [2] are the discrete time drift bn, diffusion an, and

tail ∆n,α coefficients, defined for x ∈ Xn by

aijn (s, x) =
1

hn

∫
(yi − xi)(yj − xj)Πn(x, dy) =

1

hn

∑
y∈NBn(x)

(yi − xi)(yj − xj)
|NBn(x)|

bin(s, x) =
1

hn

∫
(yi − xi)Πn(x, dy) =

1

hn

∑
y∈NBn(x)

yi − xi
|NBn(x)|

∆n,α(s, x) =
1

hn

∫
|y − x|2+αΠn(x, dy) =

1

hn

∑
y∈NBn(x)

|y − x|2+α

|NBn(x)|
.
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The boundary conditions are specified by γ and ρ, where we recall that ρ ≡ 0.
We note that γ has the alternate expression

γ(s, x) = Cγ(x) lim
n→∞

εn(x)−1
∫
|y|<εn(x)

y
p(x+ y)

pεn(x)(x)
dy,

where pr(x) =
∫
|y|<r p(x + y)dy for a normalization factor Cγ(x). Define J0 =

{(t, y) : ρ(t, y) = 0} and J1 as its complement. In our setting, J0 = ∂D and J1
is empty.

Remark. In the definitions above, we have included possible time dependence
in all quantities to be consistent with the notation of [2]. However, all processes
we consider are time-independent, so this dependence will not exist in our case.

2.3 Statement of the Stroock-Varadhan criterion

We now state two theorems of Stroock-Varadhan which together imply the con-
vergence of Xn(t) to Y (t) in D([0, T ], D) for any T > 0. These theorems will
depend on several conditions which we label A-E and F1-4 and check in the
next subsection.

Remark. By [3, Theorem 2.8], convergence in D([0, T ], D) for all T > 0 implies
convergence D([0,∞), D). Further, by [1, Theorem 4.9.12], this implies weak
convergence of the stationary measures of Xn(t) to the stationary measure of
Y (t).

The first theorem yields tightness of measures of Xn(t) on Skorokhod space.

Theorem S2.2 ([2, Theorem 6.1]). Suppose a discrete time Markov process
Xn(t) satisfies the following conditions.

A. (bounded tail mass): For some α > 0, as n→∞, we have

sup
0≤t≤T

sup
x∈G

∆n,α(t, x)→ 0.

B. (all large drifts are reflections): There exists M and c such that for all

n > n0, |bn(t, x)| > M implies 〈∇φ(x),bn(t,x)〉|bn(t,x)| ≥ c.

C. (bounded drift outside boundary): For every δ > 0 there exists some Mδ <
∞ such that for all n > n0, |bn(t, x)| > Mδ implies φ(x) < δ.

D. (bounded diffusion): There exists M <∞ such that for all n > n0,

sup
0≤t≤T

sup
x∈G
||an(t, x)|| ≤M,

where || · || denotes the Frobenius norm.
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Then, the family of distributions Pnx induced by Xx
n(t) over trajectories is con-

ditionally compact in D([0, T ], D). Moreover, any weak limit of these is concen-
trated on the subset C([0, T ], D) ⊂ D([0, T ], D).

The next theorem yields convergence of Xn(t) under convergence of the
moment quantities and some regularity conditions on the boundary.

Theorem S2.3 ([2, Theorem 6.3]). Suppose Xn(t) satisfies the following.

E. (convergence of coefficients): Drift and diffusion coefficients an and bn
converge uniformly on compact subsets K ⊂ [0, T ]×D to some a and b.

F1. (reflectivity at absorbing boundary): Given (t, y) ∈ J1 and ε > 0, there
exists n0 < ∞, δ0 > 0 such that if |t − s| < δ0, |x − y| < δ0, n > n0 and
〈∇φ(x), an(s, x)∇φ(x)〉 < δ0 the following hold:

|an(s, x)| < ε and |bn(s, x)− ρ−1(t, y)γ(t, y)| < ε.

F2. (bounded drift under absorption): Given (t, y) ∈ J1 there exist M0 < ∞
and δ0 > 0 such that if |s− t| < δ0 and |y − x| < δ0, then

|bn(s, x)| ≤M0 for all n.

F3. (drift dominates diffusion on reflection): Given (t, y) ∈ J0 and M < ∞
there exist δ0 > 0 and n0 <∞ such that if |t−s| < δ0, |x−y| < δ0, n > n0,
and 〈∇φ(x), an(s, x)∇φ(x)〉 < δ0, we have

|bn(s, x)| ≥M.

F4. (drifts at boundary simulate reflection): Given (t, y) ∈ J0 and ε > 0 there
exist δ0 > 0, n <∞ and M <∞ such that if |s− t| < δ0, |x− y| < δ0, n >
n0, and |bn(s, x)| > M , then∣∣∣∣ bn(s, x)

〈bn(s, x),∇φ(x)〉
− γ(t, y)

∣∣∣∣ < ε.

Then any weak limit Y (t) of Xn(t) in D([0, T ], D) solves the submartingale
problem for a, b, ρ, and γ.

Finally, we state a criterion for uniqueness of solution to the submartingale
problem for a, b, ρ, and γ.

Theorem S2.4 ([2, Theorem 5.8]). Suppose a, b, ρ, and γ are time independent
and satisfy the following conditions.

1. a is continuous, symmetric, and positive definite on D;

2. b is bounded and measurable;
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3. γ is bounded, locally Lipschitz, and on ∂D satisfies

〈γ(x),∇φ(x)〉 ≥ β > 0;

4. ρ(x) is bounded, continuous, and non-negative.

Then the solution to the submartingale problem for a, b, ρ, and γ is unique.

Combining Theorem S2.2, Theorem S2.3, and Theorem S2.4 yields the fol-
lowing conclusion.

Corollary S2.5. Suppose that Xn(t) satisfies the conditions of Theorem S2.2,
Theorem S2.3, and Theorem S2.4. Then Xn(t) converges to Y (t) in D([0, T ], D).

Proof. By Theorem S2.2, some subsequential limit of Xn(t) exists. Theo-
rem S2.3 implies that any such limit is a solution to the submartingale problem
for a, b, ρ, and γ, so the uniqueness of Theorem S2.4 yields the desired result.

2.4 Verification of the Stroock-Varadhan conditions

We now verify each of the nine conditions necessary for weak convergence. Con-
ditions F1 and F2 are vacuous because J1 is empty for us. We now verify each
of the remaining conditions.

2.4.1 Moment conditions

Theorem S2.6 (Condition A). As n→ 0, we have

sup
0≤t≤T

sup
x∈D

∆n,1(t, x)→ 0.

Specifically, we have

∆n,1(s, x)→ lim
n→∞

1

hn

∫
|y|<εn(x)

|y|3 p(x+ y)

pεn(x)(x)
dy = 0.

Proof. From Lemma 3.2 with f(x) = |x|3.

Theorem S2.7 (Condition E). The sequences of drift and diffusion coefficients
an → a and bn → b converge uniformly on compact subsets K ⊂ [0, T ]×G. More
specifically, the limiting quantities are

aijn (s, x)→ lim
n→∞

1

hn

∫
|y|<εn(x)

yiyj
p(x+ y)

pεn(x)(x)
dy

bin(s, x)→ lim
n→∞

1

hn

∫
|y|<εn(x)

yi
p(x+ y)

pεn(x)(x)
dy.

Proof. From Lemma 3.2 with f(x) = x and f ij(x) = xixj .
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2.4.2 Boundary conditions

Theorem S2.8 (Condition C). For δ > 0, there exists Mδ <∞ and n0 so that
for n > n0, |bn(t, x)| > Mδ implies φ(x) < δ.

Proof. On the compact set {φ(x) ≥ δ}, bn(t, x) converges uniformly by Theo-

rem S2.7 and Theorem S2.14 to 1
3
∇p(x)
p(x) ε(x)2, hence is uniformly bounded on

this set.

Theorem S2.9 (Condition D). The diffusion term an is uniformly bounded by
some M <∞ so that

sup
s,x,n
||an(s, x)|| ≤M.

Proof. By definition the diffusion term

aijn (s, x) =
1

hn

∑
y∈NBn(x)

1

|NBn(x)|
(yi − xi)(yj − xj)

is an average of numbers bounded by εn(x)
2

hn
. This quantity converges to the

bounded function ε(x) as n→∞, yielding the result.

Theorem S2.10 (Condition F3). Given (t, y) ∈ J0 and M < ∞, there ex-
ist δ0 > 0 and n0 < ∞ so that if |t − s| < δ0, |x − y| < δ0, n > n0, and
〈∇φ(x), an(s, x)∇φ(x)〉 < δ0, then |bn(s, x)| ≥M .

Proof. For any δ1 > 0, by Lemma 3.2, we may choose n0 large enough so that
for all n > n0 and x ∈ Xn, we have

||an(s, x)− a(s, x)|| < δ1,

which implies that

〈∇φ(x), an(s, x)∇φ(x)〉 ≥
(1

3
ε(x)2 − δ21)

)
|∇φ(x)|2.

Because ε(y) > 0, we can choose δ0 > 0 so that ε(x)2 is uniformly bounded away
from 0 on |x−y| < δ0, hence choosing δ1 small makes the condition vacuous.

Theorem S2.11 (Condition F4). Given (t, y) ∈ J0 and ε > 0, there exist
δ0 > 0, n0 < ∞, and M < ∞ so that if |t − s| < δ0, |x − y| < δ0, n > n0, and
|bn(s, x)| > M , then ∣∣∣∣ bn(s, x)

〈bn(s, x),∇φ(x)〉
− γ(t, y)

∣∣∣∣ < ε.

Proof. For any ε > 0, fix M > 0 to be chosen later. Choose δ0 small enough so
that if |x− y| < 2δ0, we have∣∣∣∣p(x)− p(y)− (y − x) · ∇p(y)

p(y)

∣∣∣∣ < C1

8



for some uniform C1. By Lemma 3.2 and the fact that |∇φ(x)| ≥ 1 on ∂D
and is continuous, we may choose n0 large enough so that for all n > n0 and
|x− y| < δ0, we have

• εn(x) < δ0;

• |εn(x)2h−1n − ε(x)2| < C2 for a uniform C2 > 0;

•
∣∣∣bn(s, x)− E[bn(s, x)]

∣∣∣ < M/2 for x ∈ Xn;

•
∣∣∣ bn(s,x)
〈bn(s,x),∇φ(x)〉 −

E[bn(s,x)]
〈E[bn(s,x)],∇φ(x)〉

∣∣∣ < ε/2 for x ∈ Xn.

If |bn(s, x)| > M for n > n0, then∣∣∣E[bn(s, x)]
∣∣∣ > M/2.

Now, orient the coordinate axes so that the first coordinate axis lies on the
normal vector from x to ∂D, and let τ be the distance from x to ∂D. In this
case, we compute

E[b1n(s, x)] = h−1n

∫
z∈B(x,εn(x))∩D

(z1 − x1)
p(z)

pεn(x)(x)
dy

=
εn(x)−min{τ, εn(x)}

hn
+

1

6

∂1p(x)

p(x)

εn(x)2 + τ2

hn
+ C3

and for i > 1 that

E[bin(s, x)] =
1

6

∂ip(x)

p(x)

εn(x)2

hn
+ C4 (2)

for error terms C3 and C4 independent of n. Choosing M large enough, we find

τ < (1− C5(M))εn(x)

for a constant C5(M) > 0 independent of n, which implies that

E[b1n(s, x)] ≥ C5(M)
εn(x)

hn
+

1

6

∂1p(x)

p(x)

εn(x)2 + τ2

hn
+ C3. (3)

Now, notice that γ(s, y) is a vector purely in the normal direction to ∂D at y
normalized so that 〈γ(s, y),∇φ(y)〉 = 1. Because the constants C3, C4, C5(M)
in (3) and (2) are independent of n, all terms in these equations aside from

C5(M) εn(x)hn
scale to constants as we take n0 and M large, so E[bn(s,x)]

〈E[bn(s,x)],∇φ(x)〉
becomes arbitrarily close to a vector purely in the normal direction to ∂D from
x. Choosing δ0 small enough makes these vectors coincide up to error ε/2, which
gives the result when combined with the bound∣∣∣∣ bn(s, x)

〈bn(s, x),∇φ(x)〉
− E[bn(s, x)]

〈E[bn(s, x)],∇φ(x)〉

∣∣∣∣ < ε/2

we obtained by taking n0 large.
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Theorem S2.12 (Condition B). There exist M , c, and n0 so that for all n >
n0, |bn(t, x)| > M implies

〈∇φ(x), bn(t, x)〉
|bn(t, x)|

≥ c.

Proof. By definition, γ(t, x) is uniformly bounded above by some C0. Now, by
compactness of ∂D = J0, there exists some δ > 0 so that each x ∈ {φ(y) < δ}
has a corresponding x′ ∈ δD so that the conclusion of Theorem S2.11 applies
with ε = C0/2. Taking M = Mδ and n0 from Theorem S2.8 for this δ and
applying Theorem S2.11 yields that

〈∇φ(x), bn(t, x)〉
|bn(t, x)|

≥ 2

C0
.

2.5 Completing the proof of Theorem S2.1

By Corollary S2.5, to complete the proof of Theorem S2.1, it suffices for us
to compute the limiting terms a and b and to verify the conditions of Theo-
rem S2.4 for uniqueness of the submartingale problem. We begin by computing
the limiting a and b, for which we will need the following lemma.

Lemma S2.13. For d ≥ 2, let Bd(r) be the d-dimensional ball of radius r and
Vd(r) = Vdr

d be its volume. As r → 0, we have∫
Bd(r)

xni dx =

{
0 n odd
2Vd−1

n+1 r
n+d + o(rn+d) n even

and ∫
Bd(r)

xni x
m
j dx = 0 if n odd.

Proof. If n is odd, both claims follow because the integrands are odd functions
integrated over symmetric domains. If n is even, for the first claim we compute∫

Bd(r)

xni dx =

∫ r

−r
Vd−1(

√
r2 − x2)xndx =

2Vd−1
n+ 1

rn+d + o(rn+d).

Theorem S2.14 (Drift diffusion coefficients). The limiting integrals for drift
and diffusion are

aiin (s, x) =
1

hn

(
1

3
εn(x)2 + o(εn(x)2)

)
→ 1

3
ε(x)2

aijn (s, x) =
1

hn

o(εn(x)d+2)

2Vd−1p(x)εn(x)d + o(εn(x)d)
→ 0

bin(s, x) =
1

hn

(1

3

∂ip(x)

p(x)
εn(x)2 + o(εn(x)2)

)
→ ∂ip(x)

3p(x)
ε(x)2

∆n,1(x, s) =
1

hn

(εn(x)d+4p(x)Vd−1 + o(εn(x)d+4)

2Vd−1p(x)εn(x)d + o(εn(x)d)

)
→ 0.
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Proof. Because p is differentiable on D, for any x ∈ D we have the Taylor
expansion

p(x+ y) = p(x) + y · ∇p(x) + o(|y|2)

of p at x, where the convergence is uniform on compact sets. For n large enough
so that the ball of radius εn(x) centered at x lies completely inside D, we can
substitute this expansion into the definitions of an and bn. Using Lemma S2.13
to estimate the resulting expressions yields

aiin (s, x) =
1

hn

∫
|y|<εn(x) y

2
i p(x) + y2i y · ∇p(x) + y2i o(|y|2)dy∫

|y|<εn(x) p(x) + y · ∇p(x) + o(|y|2)dy

=
1

hn

2
3Vd−1p(x)εn(x)d+2 + o(εn(x)d+2)

2Vd−1p(x)εn(x)d + o(εn(x)d)

=
1

hn

(1

3
εn(x)2 + o(εn(x)2)

)
,

aijn (s, x) =
1

hn

∫
|y|<εn(x) yiyjp(x) + yiyjy · ∇p(x) + yiyjo(|y|2)dy∫

|y|<εn(x) p(x) + y · ∇p(x) + o(|y|2)dy

=
1

hn

o(εn(x)d+2)

2Vd−1p(x)εn(x)d + o(εn(x)d)

, and

bin(s, x) =
1

hn

∫
|y|<εn(x) yip(x) + yiy · ∇p(x) + yio(|y|2)dy∫
|y|<εn(x) p(x) + y · ∇p(x) + o(|y|2)dy

=
1

hn

2
3Vd−1

∂ip(x)
p(x) εn(x)d+2 + o(εn(x)d+2)

2Vd−1p(x)εn(x)d + o(εn(x)d)

=
1

hn

(1

3

∂ip(x)

p(x)
εn(x)2 + o(εn(x)2)

)
.

Defining Sd(r) to be the surface area of a radius r ball in d dimensions, we find

∆n,1(s, x) =
1

hn

∫
|y|<εn(x) |y|

3p(x) + |y|3p(x) + |y|3o(|y|3)dy∫
|y|<εn(x) p(x) + y · ∇p(x) + o(|y|2)dy

=
1

hn

∫ εn(x)
0

r3Sd(r)p(x) + o(εn(x)d+4)

2Vd−1p(x)εn(x)d + o(εn(x)d)

=
1

hn

o(εn(x)d+4)

2Vd−1p(x)εn(x)d + o(εn(x)d)
.

The result follows by taking the n→∞ limit in each estimate and recalling that
hn was chosen so that h−1n εn(x)2 → ε̄n(x)2 and h−1n εn(x)2+α → 0. The final
convergence is uniform on compact sets because the convergence of the initial
Taylor expansion was, each integration estimate preserves uniformity, and the
limit h−1n εn(x)2 → ε̄(x)2 is uniform over all of D.
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Proof of Theorem S2.1. To prove Theorem S2.1, it remains only to check the
conditions of Theorem S2.4. Condition (1) follows because a(x) = 1

3ε(x)2 · I
is a continuous multiple of the identity. Condition (2) follows because b(x) =
1
3
∇p(x)
p(x) ε(x)2 is evidently bounded and measurable. For Condition (3), γ is

evidently bounded, locally Lipschitz because it is a normalized vector normal
to the smooth ∂D, and 〈γ(x),∇φ(x)〉 = 1 by definition. Finally, Condition (4)
is evident because ρ ≡ 0.

3 Generalizing to isotropic graphs

In this section, we give details on how to generalize our results for εn(x)-ball
graphs to isotropic graphs. The approach is exactly parallel; we verify the
conditions of the Stroock-Varadhan criterion and consider the limiting rescaled
stationary distribution. We give in this section the necessary estimates of the
minimal degree and the drift and diffusion terms. We first present a technical
lemma.

Lemma S3.1. For d ≥ 2, Let Sd(r) be the d-dimensional shell of radius r and
Vd(r) = Cdr

d be its volume. As r → 0, we have∫
Sd(r)

xni dx =

{
0 n odd
2Cd−1

n+1 (n+ d)rn+d−1 + o(rn+d−1) n even

and ∫
Sd(r)

xni x
m
j dx = 0 if n odd.

Proof. This follows by differentiating Lemma S2.13.

Let us now consider an isotropic graph model with kernel function h(r). In
particular, this implies that there is an edge from xi to xj with probability
h(|xi − xj |εn(xi)

−1) and that∫ 1

0

h(r)rd−1dr > 0.

We characterize the minimal out-degree in this setting.

Theorem S3.2 (Minimal out-degree). For an isotropic graph with kernel h(r)
satisfying (?), we have the almost sure convergence

εn(x)−d
|NBn(x)|

|Xn ∩B(x, εn(x))|
→ C(h)p(x)

for a constant C(h) independent of x and n, which implies that the minimal
degree |NBn(x)| = ω(n2/(d+2) log(n)d/(d+2)).

12



Proof. The out-degree of a vertex is the independent sum of binary variables,
each with probability h(|xi − xj |εn(xi)

−1), so Kolmolgorov’s strong law yields

εn(x)−d
|NBn(x)|

|Xn ∩B(x, εn(x))|
→ E

[
εn(x)−d

|NBn(x)|
|Xn ∩B(x, εn(x))|

]
.

Let y(r, θ) be the radial representation of y and let C = 2Cd+1(n+d)
n+1 be the

constants in Lemma S3.1. The desired expected value is the integral

E

[
εn(x)−d|NBn(x)|
|Xn ∩B(x, εn(x))|

]
=

∫
y∈B(x,εn(x))

p(x+ y)h(|y|ε−1n (x))dy

∼ εn(x)−d
∫
y∈B(x,εn(x))

(p(x) +∇p(x) · y)h(|y|ε−1n (x))dy

= εn(x)−d
∫ εn(x)

0

∫
θ∈Sd(r)

(p(x) +∇p(x) · y(r, θ))h(r)dydθ

= Cp(x)εn(x)−d
∫ εn(x)

0

h(r)rd−1dr

+ εn(x)−d
∫ εn(x)

0

h(r)rd−1
∫
θ∈Sd(1)

∇p(x) · y(1, θ)drdθ.

The latter term is zero by Lemma S3.1 since it is the integral of the odd function
y(1, θ) over a symmetric domain. Now take the substitution s = r/εn(x) to
obtain

E

[
εn(x)−d|NBn(x)|
|Xn ∩B(x, εn(x))|

]
= Cp(x)

∫ 1

0

h(s)sd−1ds.

The Kolmogorov strong law provides concentration around this value. Noting
that εn(x)d = ω(n2/(d+2) log(n)d/(d+2)) gives the asymptotic claim.

Since Theorem S3.2 guarantees that asymptotically we achieve the necessary
minimal number of points, and h(x) is zero for x > 1, Lemma 3.2 applies to show
the moment conditions in the Stroock-Varadhan criterion. For the boundary
conditions, note that C, D, and F3 only require convergence of coefficients in
Lemma S3.3 to those in Theorem S2.14. Conditions F4 and B rely on two
facts, the uniform convergence of coefficients given by Lemma S3.3, and the
asymmetry induced by the boundary (3), the proof of which is parallel to the
one given for ε-ball graphs. Therefore, to complete the proof the generalization,
it remains only to compute the limiting drift and diffusion coefficients.

Lemma S3.3 (Polynomial integrals with respect to kernel). Under the same
conditions as Theorem S3.2, for any positive integer α we have∫

y∈B(x,εn(x))

yαi p(x+ y)h(|y|ε−1n (x))dy ∼ V (h, α)

∫
y∈B(x,εn(x))

yαi p(x+ y)dy

as n→∞ for a constant V (h, α) independent of n with V (h, 1) = V (h, 2).

13



Proof. Perform the same Taylor approximation and radial decomposition as in
Theorem S3.2 to obtain∫

y∈B(x,εn(x))

yαi p(x+ y)h(|y|ε−1n (x))dy

∼
∫ εn(x)

0

∫
θ∈Sd(r)

yi(r, θ)
α(p(x) +∇p(x) · y(r, θ))h(rε−1n (x))drdθ.

For α an odd integer, by Lemma S3.1 we have∫
y∈B(x,εn(x))

yαi p(x+ y)h(|y|ε−1n (x))dy

∼
∫ εn(x)

0

h(rε−1n (x))rα+d
∫
θ∈Sd(1)

yi(1, θ)
α∇p(x) · y(1, θ)drdθ

= ∂pi(x)

∫ 1

0

h(r)rα+ddrεn(x)α+d
∫
θ∈Sd(1)

yi(1, θ)
α+1dθ

∼ V (h, α)

∫
y∈B(x,εn(x))

yαi p(x+ y)dy

for

V (h, α) = (α+ d+ 1)

∫ 1

0

h(r)rα+ddr.

If α is an even integer, we have∫
y∈B(x,εn(x))

yαi p(x+ y)h(|y|ε−1n (x))dy

∼
∫ εn(x)

0

h(rε−1n (x))rα+d−1
∫
θ∈Sd(1)

yi(1, θ)
αp(x)drdθ

= p(x)

∫ εn(x)

0

h(rε−1n (x))rα+d−1dr

∫
θ∈Sd(1)

yi(1, θ)
αdθ

= p(x)εn(x)α+d
∫ 1

0

h(r)rα+d−1dr

∫
θ∈Sd(1)

yi(1, θ)
αdθ

∼ V (h, α)

∫
y∈B(x,εn(x))

yαi p(x+ y)dy

for

V (h, α) = (α+ d)

∫ 1

0

h(r)rα+d−1dr.

The limits of drift and diffusion terms in Theorem S2.14 depend only on ra-
tios of these integrals for α = 1, 2, so applying Lemma S3.3 shows that the limits
for isotropic graphs are identical to the ones for ε-ball graphs. The remainder
of the analysis proceeds unchanged.
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4 Recovery of distances via ball-radii

We will prove that given the ball radii εn(xi), we can recover point-to-point dis-
tances if xi are located in a convex domain. Otherwise, we recover the geodesic
distances. Our goal is to show that for any points xi and xj , the weighted
shortest path distance dij between the points on the graph Gn where outgoing
edges are weighted by εn(xi) converges to the distance |xi − xj |.

4.1 Outline of proof approach

We proceed in two steps. First, we consider the case when εn(xi) is known
exactly. In this case, the weighted shortest path is an upper bound on the true
distance. We bound its weighted distance dij by constructing a path whose
weighted distance is close to the geodesic distance.

To control the upper bound, we show that there exists a δ that converges
to zero faster than minxi εn(xi) while still guaranteeing that every ball of size
δ in the domain contains at least one point. Once we find such a δ, the upper
bound will follow. Indeed, if we are at some x, we can always find a point that
whose distance from our target xj is smaller by at least εn(x)− δ. This gives an
upper bound on the number of steps in our path and therefore the total error.

Second, we assume that we are given noisy estimates of ε(x) from our algo-
rithm via the stationary distribution. We use uniform convergence of ε(x) to
control the overall pathwise error.

We give a detailed analysis of each step in separate subsections below.

4.2 The case of exact knowledge of εn.

We begin with two lemmas allowing us to construct for each pair of points i, j
a point k along which to start a path from i to j.

Lemma S4.1. Let δn = Ω(n−
1
d+1 ). For any set of n2 balls with radius δn, all

n2 balls will have at least one point of Xn with high probability.

Proof. The number of points N(x) in a ball of radius δn follows a binomial
distribution with n draws and success probability

pδn(x) =

∫
|y−x|<δ(n)

p(y)dy ∼ Vdp(x)δdn.

Therefore, the probability that N(x) = 0 is

P (N(x) = 0) = (1− pδn(x))n =
(

(1− pδn(x))pδn (x)
−1
)npδn (x)

→ e−npδn (x)

if nδdn →∞. Recalling that δn = Ω(n−
1
d+1 ), this implies that

npδn(x) ∼ n
1
d+1

and in particular that P (N(x) = 0) = o(n−2), so taking the union bound over
all n2 balls yields the result.
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Lemma S4.2. Let δn = Ω(n−
1
d+1 ). For all i, j, there exists xk ∈ B(xi, εn(xi))

such that∣∣∣(|xi − xj | − |xk − xj |)− |xi − xk|∣∣∣ ≤ 2δn and
∣∣∣|xk − xi| − εn(xi)

∣∣∣ ≤ 2δn.

Proof. Let v =
xj−xi
|xj−xi| and consider the n2 balls

Bij = B(xi + v(εn(xi)− δn), δn).

By Lemma S4.1, there must exist with high probability at least one point of Xn
in each Bij . Any such xk ∈ Bij verifies the desired conditions.

Theorem S4.3. Let xi, xj ∈ Xn and dij be the weighted shortest path distance
over the weighted graph Gn constructed from Gn by assigning weight εn(xi) to
all outgoing edges from xi. For any ε > 0, there exists an n such that∣∣∣|xi − xj | − dij∣∣∣ < ε.

Proof. Take δn = Θ(n−
1
d+1 ). We show that with high probability, there exists

a path with M steps whose weighted path distance d satisfies

|xi − xj | ≤ d ≤ |xi − xj |+ 2Mδn + max
x∈Xn

εn(x)

and so that limn→∞Mδn = 0. The result then follows because dij ≤ d.
To construct such a path from xi to xj , we apply the following procedure.

Start at the point xi. If the current point is xk and xj ∈ B(xk, εn(xk)), move
to it and terminate. Otherwise, pick a point xl ∈ Bkj and repeat until xj is
reached.

The lower bound holds because each edge weight is at least its length. For
the upper bound, by Lemma S4.2, moving to xl reduces the geodesic distance
to xj by at least |xk − xl| − 2δn and moves a weighted distance of εn(xk) <
|xk − xl| + 2δn. Thus, if our path has M steps, the difference between our
weighted distance and the geodesic distance is at most 4Mδn + maxx εn(x),
where we add the weighted distance of the last step. This gives the upper
bound.

It remains now to bound M . For this, notice that the geodesic distance to
xj decreases by at least minx∈Xn εn(x)− 2δn at each step, leading to the bound

M ≤ |xi − xj |
minx∈Xn εn(x)− 2δn

.

Recall now that δn = Θ(n−
1
d+1 ) so that εn(x) = ω(δn) and hence

Mδn =
|xi − xj |

minx∈Xn
εn(x)
δn
− 1
→ 0.
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4.3 The case of stochastic estimates of εn

We now consider the case where we are given only an estimate ε̂n(x) of εn, ob-
tained by first estimating ε(x) via the stationary distribution and then applying
a normalization to obtain ε̂n(x) on Xn. We first control the error in ε̂n(x) along
a single path.

Lemma S4.4. For k1 = i and kln = j, let xk1 , . . . , xkln be a path between i and

j in Gn. If ln = O(g−1n ), we have

ln∑
i=1

|ε̂n(xki)− εn(xki)| → 0

in probability.

Proof. By uniform convergence of the stationary distribution and continuity of
the out degree estimate p(x)εn(x)dVd = k/n, for all γ and δ, we have

P

(
sup
x∈Xn

∣∣∣∣ ε̂n(x)

gn
− ε(x)

∣∣∣∣ > γ

)
< δ

for large enough n. This implies that

P

(
sup
x∈Xn

|ε̂n(x)− εn(x)| > γgn

)
< δ.

Now notice that

P

(
ln∑
i=1

|ε̂n(xki)− εn(xki)| > γ

)
< P

(
ln sup

x
|ε̂n(xki)− εn(xki)| > γ

)
.

By assumption, the number of steps in the path is ln = O(g−1n ). Therefore,
there exists a constant M > 0 such that

P

(
ln∑
i=1

|ε̂n(xki)− εn(xki)| > γ

)
< P

(
sup
x
|ε̂n(x)− εn(x)| > Mγgn

)
< δ,

from which the claim follows by choosing n large enough.

We now show that the shortest weighted distance path recovers the geodesic
distance with stochastic estimates ε̂n(x) instead of the true values. Our ap-
proach is the same as in the deterministic case; we will construct a weighted
path and show that its weighted distance converges to the geodesic distance and
is close to the weighted distance of the shortest weighted path. Let d̂ij denote
the weighted distance of the shortest weighted distance path from xi to xj .

Theorem S4.5. For any ε > 0, there exists n such that∣∣∣|xi − xj | − d̂ij∣∣∣ < ε

with high probability.
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Proof. Let δn = Θ(n−
1
d+2 ). For any γ > 0, we show that for large enough n,

with high probability there exists a path from xi to xj with M steps whose

weighted path distance d̂ satisfies

d̂ ≤ |xi − xj |+ 4Mδn + γ + max
x∈Xn

ε̂n(x). (4)

Construct the path as in Theorem S4.3 with εn(x) replaced by ε̂n(x).
We now analyze its weighted distance. Arguing as in Lemma S4.2, a step

from xk to xl which is not the last step in this path reduces the geodesic distance
to xj by between |xk−xl| − 2δn and |xk−xl|. On the other hand, this step has
a weighted distance of ε̂n(xk), which satisfies

|xk − xl| − 2δn − |ε̂n(xk)− εn(xk)| ≤ ε̂n(xk) ≤ |xk − xl|+ |ε̂n(xk)− εn(xk)|.

Therefore, the geodesic distance traveled and weighted distance d̂ along our
constructed path differ by at most

M−1∑
i=1

|ε̂n(xki)− εn(xki+1
)|+ 4Mδn

in the first M − 1 steps. By arguing as in the proof of Theorem S4.3 with
εn(x) replaced by ε̂n(x) and noting that ε̂n(x) converges uniformly to εn(x),
the number of steps in the constructed path satisfies

|xi − xj |
maxx εn(x)

≤M ≤ |xi − xj |
minx εn(x)− 2δn

. (5)

In particular, we note that M = O(g−1n ). Applying Lemma S4.4 to choose n
large enough so that

M−1∑
i=1

|ε̂n(xki)− εn(xki+1)| < γ

and adding maxx∈Xn ε̂n(x) for the last step yields (4). Noting by (5) that

Mδn → 0, taking large enough n in (4) shows that d̂ij ≤ d̂ ≤ |xi − xj |.
We now show that d̂ij ≥ |xi − xj |. It suffices to show that the length L

of the shortest weighted distance path must be L = O(g−1n ), as Lemma S4.4
would then imply that its weighted distance with respect to ε̂n(x) converges to
its weighted distance with respect to εn(x), which is bounded below by |xi−xj |.

To bound L, note that the minimum weighted distance at each step is
minx∈Xn ε̂n(x), while the total weighed distance is at most d̂. Therefore, by
(4), we obtain that for any γ > 0 we have

L min
x∈Xn

ε̂n(x) ≤ |xi − xj |+ 4Mδn + γ + max
x∈Xn

ε̂n(x)

for large enough n. By uniform convergence of ε̂n(x) to εn(x), this shows that
for any γ > 0 we have

L ≤ |xi − xj |+ 4Mδn + γ + maxx∈Xn ε̂n(x)

minx∈Xn εn(x)
= O(g−1n )
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for large enough n, yielding the desired.
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