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Problems (Day 1)

1. Given any set A = {a1, a2, a3, a4} of four distinct positive integers, we denote the
sum a1 + a2 + a3 + a4 by sA. Let n A denote the number of pairs (i, j) with 1 ≤ i <
j ≤ 4 for which ai + a j divides sA. Find all sets A of four distinct positive integers
which achieve the largest possible value of n A.

2. Let S be a finite set of at least two points in the plane. Assume that no three points
of S are collinear. A windmill is a process that starts with a line ` going through
a single point P ∈ S . The line rotates clockwise about the pivot P until the first
time that the line meets some other point belonging to S . This point, Q, takes over
as the new pivot, and the line now rotates clockwise about Q, until it next meets a
point of S . This process continues indefinitely, with the pivot always being a point
from S .
Show that we can choose a point P in S and a line ` going through P such that the
resulting windmill uses each point of S as a pivot infinitely many times.

3. Let f be a real-valued function defined on the set of real numbers that satisfies

f (x + y) ≤ y f (x)+ f ( f (x))

for all real numbers x and y. Prove that f (x) = 0 for all x ≤ 0.

Problems (Day 2)

4. Let n > 0 be an integer. We are given a balance and n weights of weight 20,
21, . . . , 2n−1. We are to place each of the n weights on the balance, one after an-
other, in such a way that the right pan is never heavier than the left pan. At each
step we choose one of the weights that has not yet been placed on the balance, and
place it on either the left pan or the right pan, until all of the weights have been
placed.
Determine the number of ways in which this can be done.

5. Let f be a function from the set of integers to the set of positive integers. Suppose
that, for any two integers m and n, the difference f (m) − f (n) is divisible by
f (m − n). Prove that, for all integers m and n with f (m) ≤ f (n), the number
f (n) is divisible by f (m).

6. Let ABC be an acute triangle with circumcircle 0. Let ` be a tangent line to 0, and
let `a , `b and `c be the lines obtained by reflecting ` in the lines BC, CA and AB,
respectively. Show that the circumcircle of the triangle determined by the lines `a ,
`b and `c is tangent to the circle 0.
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Solutions

1. For any positive integer k, the sets {k, 5k, 7k, 11k} and {k, 11k, 19k, 29k} achieve
the maximum value of n A = 4.

In general, let A = {a1, a2, a3, a4} be labeled so that 0 < a1 < a2 < a3 < a4.
Then a2 + a4 and a3 + a4 are both strictly between sA/2 and sA, and so cannot di-
vide sA. Thus n A = 4 is maximal. If the other pair-sums all divide sA we must have a2 + a3 = (1/2) sA (because a1 + a4 also divides sA)

a1 + a3 = (1/n) sA

a1 + a2 = (1/m) sA

where 2 < n < m (if 2 = n then a2 = a1 and if n = m then a3 = a2). Subtracting
the first equation from the sum of the last two gives (1/n + 1/m − 1/2) sa = 2a1,
so that 1/n + 1/m > 1/2. This equation can hold only if n = 3 and either m = 4
or m = 5. Now if m = 4 then a1 = (1/24)sA and A = {k, 5k, 7k, 11k}; if m = 5,
we have a1 = (1/60)sA and A = {k, 11k, 19k, 29k}.

This problem was proposed by Fernando Campos Garcı́a of Mexico.
2. Call a point in S a vertex, and direct all lines so that they have right and left sides.

Call a direction ordinary if no line with that direction passes through two vertices,
and call a line ordinary if it has an ordinary direction. Let n = |S|. Call a line a
balancing line if it passes through exactly one vertex and has exactly b(n − 1)/2c
other vertices to its right.

We first show that there exists an ordinary balancing line through any vertex P .
Start with any ordinary directed line through P with, say, k points to its right.
Rotating it 180◦ about P gives a line with n − 1− k points to its right. The number
of points to the right of the ordinary lines in this process changes in increments of
1, so some ordinary line which occurs has exactly b(n − 1)/2c points to its right.
This is the desired ordinary balancing line.

Now, choose any ordinary balancing line `; we claim that the windmill starting
from ` uses each vertex as a pivot infinitely often. In any windmill, the number of
points to the right of the ordinary lines remains fixed, as at each pivot change the
old and new pivots switch sides. Thus, because ` was balancing, each ordinary line
in the windmill is balancing. Now, by definition, lines of each ordinary direction
(which are hence balancing) occur infinitely often in this windmill. But there can be
at most one balancing line in any direction, so the balancing lines we constructed
through each vertex are the unique ones in their respective directions and must
appear infinitely often, as needed.

This problem was proposed by Geoff Smith of the United Kingdom.
3. Let f (0) = a and f ( f (0)) = b. Setting x = 0 in the given identity we obtain

f (y) ≤ ay + b. Applying this to the last term of the given yields

f (x + y) ≤ y f (x)+ a f (x)+ b. (1)

Substituting x = z + a, y = −a gives f (z) ≤ b for all z ∈ R. Now applying this
to the last term of the identity gives

f (x + y) ≤ y f (x)+ b. (2)

Replacing x and y in (2) with x + y and −y gives f (x) ≤ −y f (x + y) + b.
For y < 0, we can multiply (2) by −y and add it to the last inequality, giving

f (x) ≤ −y2 f (x) + b − yb, or f (x) ≤ b
(

1−y
1+y2

)
when y < 0. As y → −∞ the

last expression gets arbitrarily close to zero, so we have f (x) ≤ 0 for all x ∈ R.
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Setting x = 2a − 1 and y = 1 − a in (1) gives f (2a − 1) ≥ 0. Since
f (x) ≤ 0 always, this means f (2a − 1) = 0. The given identity with y = 0 forces
f (x) ≤ f ( f (x)) always, so 0 = f (2a − 1) ≤ f ( f (2a − 1)) = a. This means that
a = f (0) = 0 and thus b = 0 as well. Setting y = −x in (2) and using these facts
gives 0 ≤ −x f (x) for all x . For x < 0, this implies that f (x) ≥ 0; but we know
f (x) ≤ 0 always and f (0) = 0, so in fact f (x) = 0 whenever x ≤ 0.

This problem was proposed by Igor Voronovich of Belarus. This solution is
based on one by Oleg Golberg. (There are non-constant functions that satisfy the
identity.)

4. The answer is (2n − 1)!! = 1 · 3 · 5 · · · (2n − 1).
Call a sequence of moves valid if the right pan is never heavier than the left pan

when making these moves. It suffices to give a (2n + 1)-to-1 mapping between
valid sequences for weights 20, . . . , 2n and weights 20, . . . , 2n−1.

For a valid sequence of moves of weights 20, 21, . . . , 2n , if we remove the move
of putting weight 20 in this sequence and divide the remaining weights by 2, we
obtain a valid sequence of moves of weights 20, . . . , 2n−1. On the other hand, for
a valid sequence S of weights 20, . . . , 2n−1, doubling each weight gives a valid se-
quence S′ of weights 21, . . . , 2n . Note that the difference in weight between the left
and right pans is always at least 2 after the first move in S′. Therefore, modifying
S′ by adding weight 20 to the left pan on the first move or to either pan on any
move after the first yields 2n + 1 valid sequences of weights 20, . . . , 2n . These two
constructions give the desired mapping.

This problem was proposed by Morteza Saghafian of Iran.

5. Setting n = 0 in the given gives f (m) | f (m) − f (0), hence f (m) | f (0) for all
m, while taking m = 0 yields f (−n) | f (0)− f (n) for all n. Together, these show
that f (−n) | f (n) for all n, implying f (n) = f (−n). It therefore suffices to show
that for all m, n > 0 either f (m) | f (n) or f (n) | f (m).

Assume the contrary and pick m > n > 0 violating the desired with m + n min-
imal. Since m − n > 0 and (m − n)+ n = m < m + n, the minimality of m + n
implies that either f (n) | f (m − n) or f (m − n) | f (n). If f (n) | f (m − n),
then f (n) | f (m) − f (m − n) implies f (n) | f (m), a contradiction. There-
fore, f (n) - f (m − n), hence f (m − n) | f (n) and f (m − n) < f (n). Note that
f (m) | f (n)− f (n − m) = f (n)− f (m − n). Since f (n)− f (m − n) > 0, this
means f (m) < f (n). Now, by the given, we have f (n) | f (m)− f (m − n), where
| f (m)− f (m − n)| < f (n) because f (m), f (m − n) < f (n). Hence, it must be
that f (m) = f (m − n), implying f (m) | f (n), a contradiction.

This problem was proposed by Mahyar Sefidgaran of Iran. This solution is by
Oleg Golberg.

6. Let A1, B1,C1 be the intersections of `b and `c, `c and `a , and `a and `b. Let ` be
tangent to 0 at T . Define points A2, B2,C2 (distinct from A, B,C) on 0 so that
T̂A = Â2 A, T̂B = B̂2 B, and T̂C = Ĉ2C . Let lines AB,BC,CA meet ` at C3, A3, B3,
respectively. Without loss of generality, we suppose that ` is such that B lies inside
triangle B1 A3C3; other configurations are analogous. Let B1 B2 intersect 0 again at
H . We claim there is a homothety H centered at H sending A2 B2C2 to A1 B1C1 and
0 to the circumcircle 01 of triangle A1 B1C1. Since H lies on 0, such an H would
show that 0 and 01 are tangent.

We first show that corresponding sides of A1 B1C1 and A2 B2C2 are parallel;
by symmetry, it suffices to show that B2C2 ‖ B1C1. Let S be the intersection
of lines B2C2 and `. Since B̂2T = 2B̂T and T̂C2 = 2T̂C, we have ∠B2ST =
∠B2C2T − ∠STC2 = 2(∠BC2T − ∠CTC2). Because BC2CT is cyclic, we have
2(∠BC2T − ∠CTC2) = 2(∠BCT − ∠CTC2) = 2∠BA3T . Because B1 A3 and ` are
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reflections of each other across line BC, we have 2∠BA3T = ∠B1 A3T . Combining
these equalities gives ∠B2ST = ∠B1 A3T , hence B2C2 ‖ B1C1.

It remains to show that A1 A2 and C1C2 pass through H ; by symmetry, it
suffices to do so for C1C2. We claim first that the intersection I of B1 B and
C1C lies on 0. Indeed, by definition A1 B1,AB, ` concur at C3, B1C1,BC, `
concur at A3, and C1 A1,CA, ` concur at B3. By reflection properties, line AB
(through C3) bisects ∠A3C3 B1, and line BC (through A3) bisects ∠B1 A3C3, so B
is the incenter of triangle B1C3 A3 in our configuration. We see similarly that
C is the excenter of triangle C1 A3 B3. Computing, we see ∠ABI = 180◦ −

∠B3BC3 = 180◦ −
(

90◦ + ∠B1 A3C3
2

)
= 90◦ − ∠B1 A3C3

2 and ∠ACI = ∠CB3 A1 −

∠CC1 B3 =
∠A3 B3 A1

2 −
∠A3C1 B3

2 =
∠B3 A3C1

2 =
180◦−∠B1 A3C3

2 = 90◦ − ∠B1 A3C3
2 .

Hence, ∠ACI = ∠ABI, and ACBI is cyclic, so I lies on 0.
By Pascal’s theorem on the (self-intersecting) cyclic hexagon B2HC2BIC, the

intersection B1 of B2 H and BI, the intersection X of C2 B and C B2, and the inter-
section of HC2 and IC all lie on B1 X . Now, because B̂2 B = B̂T and Ĉ2C = ĈT ,
CB2 and BC2 are the reflections of CT and BT across BC. Thus, their intersection
X is the reflection of T across BC and lies on the reflection B1C1 of TS across BC.
This means that B1 X is the same line as B1C1. Therefore, HC2 passes through the
intersection of IC and B1C1, which is C1 because I lies on CC1. Thus, C1C2 passes
through H , as needed.

This problem was proposed by the Olympiad problem committee of Japan.

Results.
The IMO was held in Amsterdam, The Netherlands, on July 18–19, 2011. There

were 564 competitors from 101 countries and regions. On each day contestants were
given four and a half hours for three problems.

On this challenging exam, a perfect score was achieved by only one student, Lisa
Sauermann (Germany). With this result, she becomes the most successful IMO partic-
ipant of all time, having won 4 gold medals and 1 silver medal in her 5 participations.
Each member of the USA team won a gold medal, ranking the USA 2nd among all 101
participating countries, behind China. This impressive performance is only the second
time the entire USA team has won gold medals. The students’ individual results were
as follows.

• Wenyu Cao, who finished 12th grade at Phillips Academy in Andover, MA, won a
gold medal.

• Ben Gunby, who finished 11th grade at Georgetown Day School in Washington, DC,
won a gold medal.

• Xiaoyu He, who finished 11th grade at Acton-Boxborough Regional High School in
Acton, MA, won a gold medal.

• Mitchell Lee, who finished 11th grade at Thomas Jefferson High School for Science
and Technology in Alexandria, VA, won a gold medal.

• Evan O’Dorney from Danville, CA, who finished 12th grade (homeschooled through
Venture School), won a gold medal.

• David Yang, who finished 10th grade at Phillips Exeter Academy in Exeter, NH,
won a gold medal.


