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Problems (Day 1)

1. Prove that for any pair of positive integers k and n, there exist k positive integers
m1,m2, . . . ,mk (not necessarily different) such that

1+ 2k − 1

n
=
(

1+ 1

m1

)(
1+ 1

m2

)
· · ·
(

1+ 1

mk

)
.

2. A configuration of 4027 points in the plane is called Colombian if it consists of
2013 red points and 2014 blue points, and no three of the points of the configuration
are collinear. By drawing some lines, the plane is divided into several regions. An
arrangement of lines is good for a Colombian configuration if the following two
conditions are satisfied:

• no line passes through any point of the configuration;
• no region contains points of both colours.

Find the least value of k such that for any Colombian configuration of 4027 points,
there is a good arrangement of k lines.

3. Let the excircle of the triangle ABC opposite the vertex A be tangent to side BC
at A1. Define the points B1 on CA and C1 on AB analogously, using the excircles
opposite B and C , respectively. Suppose that the circumcentre of triangle A1 B1C1

lies on the circumcircle of triangle ABC. Prove that triangle ABC is right-angled.

The excircle of triangle ABC opposite the vertex A is the circle that is tangent
to the line segment BC, to the ray AB beyond B, and to the ray AC beyond C. The
excircles opposite B and C are similarly defined.

Problems (Day 2)

4. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
the side BC, lying strictly between B and C . The points M and N are the feet of the
altitudes from B and C , respectively. Denote by ω1 the circumcircle of BWN, and
let X be the point on ω1 such that WX is a diameter of ω1. Analogously, denote by
ω2 the circumcircle of triangle CWM, and let Y be the point on ω2 such that WY is
a diameter of ω2. Prove that X , Y , and H are collinear.
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5. Let Q>0 be the set of positive rational numbers. Let f : Q>0 → R be a function
satisfying the following three conditions:

(i) for all x, y ∈ Q>0, we have f (x) f (y) ≥ f (xy);
(ii) for all x, y ∈ Q>0, we have f (x + y) ≥ f (x)+ f (y);

(iii) there exists a rational number a > 1 such that f (a) = a.
Prove that f (x) = x for all x ∈ Q>0.

6. Let n ≥ 3 be an integer, and consider a circle with n + 1 equally spaced points
marked on it. Consider all labellings of these points with the numbers 0, 1, . . . , n
such that each label is used exactly once; two such labellings are considered to be
the same if one can be obtained from the other by a rotation of the circle. A labelling
is called beautiful if, for any four labels a < b < c < d with a + d = b + c, the
chord joining the points labeled a and d does not intersect the chord joining the
points labeled b and c.

Let M be the number of beautiful labellings, and let N be the number of ordered
pairs (x, y) of positive integers such that x + y ≤ n and gcd(x, y) = 1. Prove that

M = N + 1.

Solutions

1. We induct on k. The base case k = 1 holds with m1 = n. If the statement holds for
some k, we consider two cases. If n = 2m − 1 is odd, we have

1+ 2k+1 − 1

n
= 2m

2m − 1

2k+1 + 2m − 2

2m
=
(

1+ 1

2m − 1

)(
1+ 2k − 1

m

)
,

where 1+ 2k−1
m is the product of k terms of the desired form by the induction hy-

pothesis, yielding the desired decomposition. If n = 2m is even, we have

1+ 2k+1 − 1

n
= 2k+1 + 2m − 1

2k+1 + 2m − 2

2k+1 + 2m − 2

2m

=
(

1+ 1

2k+1 + 2m − 2

)(
1+ 2k − 1

m

)
,

where 1+ 2k−1
m is the product of k terms of the desired form by the induction hy-

pothesis, yielding the desired decomposition and completing the induction.
This problem was proposed by the Olympiad problem committee from Japan.

2. The answer is 2013. We first show that a good arrangement with at most 2013 lines
always exists. We begin with the following key lemma.

LEMMA 1. Any pair of points P and Q in a Colombian configuration C can be
separated from the other points by two lines.

Proof. No three points in C are collinear, so each other point has one of finitely
many positive distances to PQ. Choose r > 0 less than all such distances; the two
lines parallel to and at a distance r from PQ have the desired property.

Let C be the convex hull of our Colombian configuration C . If a red point R
is a vertex of C, draw a line `1 separating R from all other points. Next, place
the other 2012 red points into 1006 pairs and apply Lemma 1 to draw 2012 lines
separating them from the rest of C . Together with `1, these 2012 lines form a good
arrangement. Otherwise, C has a side B1 B2 consisting of blue points. Draw a line `1

separating B1 and B2 from the rest of C , place the 2012 remaining blue points into
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1006 pairs, and apply Lemma 1. The resulting 2012 lines together with `1 form the
desired good arrangement.

For the other direction, let P = A1 · · · A4026 be a regular 4026-gon with Ai red
for i odd and blue for i even. Form a Colombian configuration C with the vertices
of P and another blue point B. We claim that any good arrangement for C has at
least 2013 lines. Note that each of the 4026 pairs (Ai , Ai+1) of neighboring points
contains points in different regions, so Ai Ai+1 intersects at least one of the lines.
Each line intersects P at most twice, so an arrangement with k lines can produce at
most 2k intersections, implying that 2k ≥ 4026 and hence k ≥ 2013, as desired.

This problem was proposed by Ivan Guo from Australia. The current formu-
lation of this problem was suggested during IMO jury meetings by Leonardo
I. M. Sandoval from Mexico.

3. Let ω be the circumcircle of ABC, and let O1 be the circumcenter of A1 B1C1.
Because A1, B1, and C1 are on the boundary of ABC and O1 is outside of ABC ,
A1 B1C1 is obtuse. Without loss of generality, assume that ∠B1 A1C1 is obtuse so
that O1 and A lie on the same side of line B1C1.

LEMMA 2. The second intersection A0 of ω and the circumcircle of triangle
AB1C1 is the midpoint of arc B̂AC.

Proof. By the definition of A0, we have ∠A0 BC1 = ∠A0 B A = ∠A0C A =
∠A0C B1 and ∠A0C1 A = ∠A0 B1 A; hence, AC1 B and AB1C are similar. But
BC1 = C B1, so these two triangles are congruent; hence, A0 B = A0C . Because
AA0 B1C1 is cyclic, we have ∠C1 A0 B1 = ∠C1 AB1 = ∠BAC, so A0 lies on B̂AC
with B A0 = C A0, implying that A0 is the midpoint of B̂AC.

By Lemma 2, a spiral similarity centered at A0 sends B1C1 to C B, so A0 is the
intersection of ω and the perpendicular bisector of B1C1, which is on the same side
of BC as A. Recalling that A0 is the circumcenter of A1 B1C1, and using this result
for the analogous points B0 and C0, we obtain that A0C1 B0 A1 and A0 A1C0 B1 are
kites with symmetry axes A0 B0 and A0C0. Recalling that C1 B1 AA0 is cyclic, we
have ∠CAB = ∠C1 A0 B1 = 2∠B0 A0C0 = B̂0C0. By Lemma 2, B0 and C0 are the
midpoints of ÂBC and B̂CA, hence

∠CAB = B̂0C0 = 360◦ − ÂCC0 − B̂0 A = 360◦ − B̂CA+ ÂBC

2

= 360◦ − 360◦ − 2∠BCA+ 360◦ − 2∠ABC

2
= ∠BCA+ ∠ABC,

implying that ∠CAB = 90◦, so ABC has right angle at vertex A.
This problem was proposed by Alexander Polyanskiy from Russia.

4. Let L be the foot of the altitude of ABC from A, and let O1 and O2 be the centers
of ω1 and ω2, respectively. Because ∠WNB < ∠CNB = 90◦, O1 and N lie on the
same side of BC. Likewise, O2 and M lie on the same side of BC. Hence, segment
O1 O2 does not intersect line BC. In particular, W does not lie on line O1 O2, and ω1

and ω2 intersect again at a point Z other than W .
Because XW is a diameter of ω1, we have XZ ⊥ WZ. Likewise, we have YZ ⊥

WZ, so X , Y , and Z lie on a line perpendicular to line ZW. It suffices to show
that HZ ⊥ ZW. First, quadrilaterals BNHL and CMHL are cyclic, so by power of a
point, AM · AC = AH · AL = AN · AB; hence, A lies on the radical axis ZW of ω1

and ω2. Second, by our previous argument, A is the radical center of circles ω1, ω2,
and the circumcircles of quadrilaterals BNHL and CMHL. In particular, we have
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AH · AL = AZ · AW, so ZHLW is cyclic. This shows that ∠AZH = ∠ALW = 90◦,
hence HZ ⊥ AW, completing the proof.

This problem was proposed by Warut Suksompong and Potcharapol Suteparuk
from Thailand.

5. We claim that the only solution is f (x) = x for all x ∈ Q>0.
By applying (i) and iterating (ii), we see that f (n) f (x) ≥ f (nx) ≥ n f (x) for

positive integer n. Setting x = a, we see that f (n) ≥ n, because f (a) = a > 0.
We claim that f is non-negative and non-decreasing. Indeed, if f (y) < 0, set-

ting x = y and dividing by f (y) in our first inequality shows that f (n) ≤ n, hence
f (n) = n. This chain of inequalities is thus an equality, so f (n) f (x) = f (nx) for
all x . Writing y = p

q ∈ Q>0, we have f (q) f ( p
q ) = f (p), so f (y) = y, a contra-

diction. Hence, f is non-negative, thus also non-decreasing by (ii).
We claim now that f (x) ≥ x for all x ≥ 1. First, note that f (x) ≥ f (bxc) ≥

bxc > x − 1. From (i) we know that f (x)n ≥ f (xn), so f (x)n ≥ f (xn) > xn −
1. But if f (x) = x − ε for some ε > 0 and x > 1, then for all n we have 1 >
xn − f (x)n ≥ (x − f (x))(xn−1) = εxn−1. Since x > 1, we can choose n such that
xn−1 > 1

ε
, a contradiction. Therefore, f (x) ≥ x for all x > 1, and we already know

that f (1) ≥ 1, yielding the claim.
We now show that f (x) = x for x ≥ 1. Note that ak = f (a)k ≥ f (ak) for posi-

tive integers k by (i). We also have f (ak) ≥ ak , so f (ak) = ak for positive integers
k. For x ≥ 1 and k with ak > 2x , we have ak = f (ak) ≥ f (x) + f (ak − x) ≥
x + (ak − x) = ak . Equality thus holds, so f (x) = x for x ≥ 1.

Finally, for any integer n, we have f (n) = n and f (n) f (x) ≥ f (nx) ≥ n f (x),
so equality holds, implying that f (nx) = n f (x). In particular, for any x = p

q in
Q>0, we conclude that q f (x) = f (p) = p, hence f (x) = x , as desired.

This problem was proposed by Nikolai Nikolov from Bulgaria.
6. We will prove that there are N + 1 beautiful labelings for all n ≥ 2.

Let 0 < x < 1 be a real number. Define the beautiful labeling Cn(x) as follows.
For 0 ≤ k ≤ n, let Wk = e

2π ik
n x , and let Zk be the point that results from rearranging

the Wk evenly in the same relative position; label Zk by k. Note that Wa Wb and
WcWd intersect iff Za Zb and Zc Zd intersect.

Call such a labeling cyclic, and call it degenerate if two of the Wk coincide. Note
that Cn(x) is degenerate iff x is a reduced fraction with denominator at most n. Call
such numbers good; there are N good fractions in (0, 1).

LEMMA 3. A labeling is beautiful if and only if it is non-degenerate cyclic.

Proof. Let Cn(x) be a non-degenerate cyclic labeling. For any 0 ≤ a < b <
c < d ≤ n with a + d = b + c, arcs Ŵa Wb and ŴcWd have the same measure, so
Wa Wd ‖ WbWc, implying that Cn(x) is beautiful.

For the converse, induct on n with trivial base case n = 2. If all beautiful ar-
rangements of [0, n − 1] are cyclic, for a beautiful arrangement A of [0, n], form
A′ = Cn−1(x) by removing n. Let x lie between consecutive good fractions p1/q1

and p2/q2 with q1, q2 ≤ n − 1, and consider two cases.
Case 1: There is no fraction with denominator n between p1

q1
and p2

q2
. If A 6= Cn(x),

they can differ only in the location of n. Suppose Wn occurs directly between Wi

and W j in Cn(x) in clockwise order. Note that i + (n − 1) = (i − 1)+ n and j +
(n − 1) = ( j − 1)+ n, so the two corresponding pairs of chords do not intersect
and Wi ,Wn,W j ,Wi−1,Wn−1,W j−1 occur in that order. In A, since Wi Wn−1 does not

intersect WnWi−1, Wn lies on arc Ŵi Wn−1. Likewise, Wn must lie on arc Ŵn−1W j .
Thus Wn lies between Wi and W j , so A = Cn(x).
Case 2: There is a fraction a

n with denominator n between p1
q1

and p2
q2

. Since p2
q2
−
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p1
q1
≤ 1

n−1 , there is a unique such fraction. Choose x1 ∈ ( p1
q1
, a

n ) and x2 ∈ ( a
n ,

p2
q2
).

We wish to show that either A = Cn(x1) or A = Cn(x2). In A′, Wq1 , W0, Wq2 occur

in that clockwise order. It suffices to show that Wn lies on arc Ŵq1 Wq2 in A. This
follows by an analysis of chords Wq1 Wn−1, WnWq2−1, Wq1−1Wn , and Wn−1Wq2 using
the final argument of Case 1.

By Lemma 3, it remains for us to count non-degenerate cyclic labelings. We
claim that Cn(x) = Cn(y) iff there is no good fraction between x and y. As x
varies, the ordering of points in Cn(x) changes only when Cn(x) is degenerate so
that two points coincide. It follows that Cn(x) = Cn(y) when there is no good
fraction between x and y. If there is a good fraction p/q with x < p/q < y, in
Cn(y) there are at least p integers 1 ≤ i ≤ q such that W0 is clockwise of Wi−1 and
Wi is clockwise of W0, while in Cn(x) there are fewer than p such integers. Hence,
Cn(x) and Cn(y) differ, giving the claim.

We conclude that the number of non-degenerate cyclic labelings is one greater
than the number of good fractions in (0, 1), hence equal to N + 1.

This problem was proposed by Alexander Golovanov and Mikhail Ivaniv from
Russia.

Results

The IMO was held in Santa Marta, Colombia, on July 23–24, 2013. There were 527
competitors from 97 countries and regions. On each day contestants were given four
and a half hours for three problems.

The top score of 41/42 was shared by Yutao Liu (China) and Eunsoo Jee (South
Korea). The USA team won 4 gold and 2 silver medals, placing third behind China
and Korea. The students’ individual results were as follows.

• Ray Li, who finished 12th grade at Phillips Exeter Academy in Exeter, NH, won a
silver medal.

• Mark Sellke, who finished 11th grade at William Henry Harrison High School in
West Lafayette, IN, won a gold medal.

• Bobby Shen, who finished 12th grade at Dulles High School in Sugar Land, TX,
won a gold medal.

• Thomas Swayze, who finished 12th grade at Canyon Crest Academy in San Diego,
CA, won a silver medal.

• James Tao, who finished 11th grade at Illinois Mathematics and Science Academy
in Aurora, IL, won a gold medal.

• Victor Wang, who finished 12th grade at Ladue Horton Watkins High School in
St. Louis, MO, won a gold medal.
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