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Introduction and results

Motivation: What is a natural measure of latent distance on a graph?
Our answer: The Laplace transform of the hitting time.
Our contributions:
1. A new technique for analyzing random walks on graphs through
continuum limits.

2. Extension of von Luxburg-Radl-Hein 2014: the expected hitting time is
a degenerate measure of distance.

3. A principled estimator — Laplace transformed hitting time:
• Consistent for recovering a latent distance metric
• Respects underlying density and cluster structure
• Robust to model misspecification.

The spatial graph model

Summary: We define a random network model with edges determined by a latent metric.

The spatial graph model depends on the following latent quantities:
• p(x): latent probability density in compact connected smooth domain D ⊂ Rd;
•Xn = {x1, . . . , xn}: coordinate points drawn i.i.d. from p(x);
• εn(xi) : Xn → R>0: local scale function (may depend on Xn);
• h : R≥0 → [0, 1]: connectivity kernel with h(x) = 0 for x > 1, h(1) > 0, and h
left-continuous at 1.
Definition 1: Spatial graph
The spatial graph Gn corresponding to εn and h is the random graph with:
• vertex set Xn;
• a directed edge from xi to xj with probability h(|xi − xj|εn(xi)−1).

Examples:
1.Directed k-NN: h(x) = 1x∈[0,1]; εn(x) = distance to kth nearest neighbor.
2. (Truncated) Gaussian kernel: h(x) = e−

x2

σ21x∈[0,1]; εn(x) = bandwidth.

Continuum limits of random walks on the graph

Summary: We characterize the continuum limit of the simple random walk on a spatial
graph as an Itô drift-diffusion process.

As the graph grows large (n → ∞), suppose there exist scaling constants gn and a
deterministic continuous function ε : D→ R>0 so that
n→ ∞, gn → 0, gnn

1
d+2 log(n)−

1
d+2 → ∞, εn(x)g

−1
n → ε(x) for x ∈ Xn.

Let Xnt be the simple random walk on the spatial graph Gn. A key observation:
For εn small and t large, the random variable Xnt − Xn0 is the sum of many small
independent (but not identically distributed) increments.
Theorem 1: Continuum limit of the walk (Hashimoto-Sun-Jaakkola 2015)
The simple random walk Xnt converges uniformly in Skorokhod space D([0,∞), D)

after a time scaling t̂ = tg2n to the Itô process Yt̂ valued in the space of continuous
functions C([0,∞), D) with reflecting boundary conditions on D defined by

dYt̂ = ∇ log(p(Yt̂))ε(Yt̂)2/3dt̂+ ε(Yt̂)/
√
3dWt̂.

Figure 1 : An heuristic explanation of the scaling limit of Theorem 1.

Key idea: Attributes of stochastic processes (stationary distribution, hitting time) are
defined for both Yt̂ and Xnt . Often Theorem 1 implies the continuous attribute is a
rescaled limit of the discrete one.

Application: Degeneracy of expected hitting time

Summary: Although expected hitting time between two vertices is a commonly used
measure of distance, we show it is degenerate for spatial graphs and recovers only the
inverse of the stationary density.

Notation: T xixj,n = the hitting time of Xnt started at xi to xj.
A common measure of distance is:

Expected hitting time = E[T xixj,n].

We show that this measure is unrelated to distance.
Theorem 2: Degeneracy of expected hitting time
For d ≥ 2 and any i, j, we have

E[T xixj,n]
n

a.s.→ 1

π̂(xj)
.

Note: Generalizes surprising result of von Luxburg-Radl-Hein 2014 in the undirected case.
Proof intuition:
1. Compare the hitting time of the simple random walk to its Itô process equivalent;
2. Compare the Itô process with Brownian motion and show by transience that it is
unlikely to hit quickly;

3. Conditioned on slow hitting, the random walk mixes before it hits, yielding the
stationary distribution.

Figure 2 : Estimated distance from orange starting point on a k-nearest neighbor graph
constructed on two clusters. A and B show degeneracy of hitting times (Theorem 2). C,
D, and E show that log-LTHT interpolate between hitting time and shortest path.

Simulating Brownian motion on the latent space

Summary: We give a method to modify the transition probabilities of the random walk
on a spatial graph so trajectories converge to Brownian motion on the latent metric space.

Notation: qt(x, xi) = the probability of transitioning to x started at xi in t time.
We make a regularity assumption on transitions of the simple random walk:

For t = Θ(g−2n ), nqt(x, xi) is a.s. eventually uniformly equicontinuous. (?)

Hashimoto-Sun-Jaakkola 2015: under (?), can consistently estimate p(x) and ε(x).
Theorem 3: Simulating Brownian motion on the latent space
Let p̂ and ε̂ be consistent estimators of the density and local scale and A be the
adjacency matrix. Then the random walk X̂nt with transitions defined below converges
to Brownian motion.

P(X̂nt+1 = xj | X̂nt = xi) =


Ai,jp̂(xj)

−1∑
kAi,kp̂(xk)

−1ε̂(xi)
−2 i 6= j

1− ε̂(xi)
−2 i = j

• Attributes of reweighted walk → attributes of Brownian motion
• Brownian motion is simpler to analyze than general Itô process

Figure 3 : Distributions of 40-step random walks on a k-nn graph with original and
Brownian weighting. Points drawn from Gaussian restricted to a disk.

Laplace transformed hitting time (LTHT)

Summary: We propose the Laplace transform of the hitting time as a metric estimator.

Our analysis of expected hitting time reveals the following drawbacks:
1. The expectation is dominated by long paths;
2. Long paths depend on regions of the graph unrelated to the geodesic.
Resolution: Consider the Laplace transform of the hitting time.
Definition 2: The scaled log-Laplace transformed hitting time
Let βn be a scale parameter. The scaled log Laplace transformed hitting time
(LTHT) is defined as:

− log(E[e−βnT
xi
xj,n])/

√
2βngn.

and can be computed via the matrix inverse for any transition matrix W
−log(E[exp(−βT xixj,n)])/

√
2βngn = −log((I−W exp(−β))−1ji )/

√
2βngn.

• LTHT is closely related to rooted page rank [3] and potential distance [4];
• LTHT puts greater weight on shorter paths;
• LTHT avoids instability of shortest paths by averaging paths near the geodesic.
PDE Characterization: LTHT is solution to Feynman-Kac boundary value problem.
Theorem 4: Feynman-Kac for the Laplace transform
The LTHT u(x) = E[exp(−βT xE)] is the solution to the boundary value problem with
boundary condition u|∂E = 1:

1

2
Tr[σTH(u)σ] + µ(x) · ∇u− βu = 0.

LTHT is consistent

Summary: For scale parameter βn = Θ(β̂g2n), a modification of LTHT gives consistent
metric recovery. We will consider hitting times to the s-neighborhood of a vertex xi in
Gn, the graph equivalent of the ball B(xi, s).

Modify LTHT using the following notations:
• s-neighborhood NBsn(x) = estimated set of vertices within latent distance s of x;
• T̂ xiB(xj,s) = hitting time of the transformed walk on Gn from xi to NBsn(xj).
Theorem 5: Consistency of LTHT
Let xi, xj ∈ Gn be connected by a geodesic not intersecting ∂D. For any δ > 0, there
exists a choice of β̂ and s > 0 so that if βn = β̂g2n, for large n we have whp

∣∣∣∣∣∣∣− log(E[exp(−βnT̂ xiNBsn(xj),n)])/
√√√√2β̂− |xi − xj|

∣∣∣∣∣∣∣ < δ.

Proof intuition:
1. For Brownian motion Wt started at xi, log-LTHT for T xiB(xj,s), the hitting time of Wt

to B(xj, s), recovers the latent metric.
Lemma 1
For any α < 0, if β̂ = sα, as s→ 0 we have

− log(E[exp(−β̂T xiB(xj,s))])/
√√√√2β̂→ |xi − xj|.

2. By Theorem 1, discrete log-LTHT to B(xj, s) converges to continuous log-LTHT;
3. Hitting time to s-neighborhood converges to hitting time to ball B(xj, s) of radius s.
Empirical consistency:

Figure 4 : Estimated distance vs. true latent distance for different values of β on re-
weighted walks (simulated dataset) on a k-NN graph with 5000 vertices and k = 100.

LTHT preserves clusters

Summary: LTHT learns a cluster preserving metric in 1-D without reweighting.

Consider the density-dependent metric

m(x) =
2

ε(x)2
+
1

β

∂ log(p(x))
∂x2

+
1

β


∂ log(p(x))

∂x


2

which separates points in different clusters.
Theorem 6: LTHT preserves clusters without debiasing
Suppose d = 1 and h(x) = 1x∈[0,1]. The hitting time T xi

NBε̂(xj)gnn (xj),n
of a simple random

walk from xi to the out-neighborhood of xj converges to

− log(E[−βT xi
NBε̂(xj)gnn (xj),n

])/
√
8β→ ∫ xj

xi

√√√√m(x)dx+ o
log(1+ e−

√
2β)/

√
2β

 .

LTHT is robust

Summary: LTHT distinguishes between close and far vertices even when a large number
of non-geometric noise edges are added to the graph.

Noisy spatial graph: a mixture of spatial graph and Erdös-Renyi noise:
Edge from xi to xj with probability h(|xi − xj|εn(xi)−1)(1− qj(n)) + qj(n).

Two step log-LTHT: LTHT ignoring immediate hits:
Mts
ij := − log(E[exp(−βT xixj,n) | T

xi
xj,n
> 1]).

Theorem 7: Two-step LTHT reduces to RA index
If β = ω(log(gdnn)) and xi and xj have at least one common neighbor, then

Mts
ij − 2β→ − log(Rij) + log(|NBn(xi)|).

where the directed RA index Rij (well-known local vertex similarity measure) is
Rij :=

∑
xk∈NBn(xi)∩NBin

n(xj)

|NBn(xk)|−1

for out and in-neighborhood sets NBn(xi) and NBin
n(xi).

Robustness: RA index distinguishes close and far neighbors even under noise.
Theorem 8: Two-step LTHT is robust under extreme model deviations
If qi = q = o(gd/2n ) for all i, there are c1, c2 and hn so that for any i, j we have whp
• |xi − xj| < min{εn(xi), εn(xj)} if Rijhn < c1;
• |xi − xj| > 2max{εn(xi), εn(xj)} if Rijhn > c2.

Evaluation: Link prediction task

Summary: LTHT-based methods outperform benchmarks on two link prediction tasks.

Figure 5 : LTHT recovers deleted edges
most consistently on a citation network

Figure 6 : Two-step LTHT outperforms other
techniques at word similarity estimation.

Link prediction: (Figure 5, KDD 2003 challenge data, 11,042 vertices and 222,027
edges): Given a network with edges deleted, how often does each method rank the true,
deleted edge above other missing edges. Log-LTHT and RA index both perform well.
Link weight prediction: (Figure 6, Associative thesaurus, 7754 vertices and 246,609
edges): Predict whether two words were associated often in a survey. Task is a classi-
fication problem for whether a link is strong (>10 mentions) or weak. Two-step LTHT
performs better than other methods.
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