Introduction and results

Motivation: What is a natural measure of latent distance on a graph?

Our answer: The Laplace transform of the hitting time.

Our contributions:
1. A new technique for analyzing random walks on graphs through

continuum limits.
2. Extension of von Luxburg-Radl-Hein 2014: the expected hitting time is

a degenerate measure of distance.
3. A principled estimator — Laplace transformed hitting time:

- Consistent for recovering a latent distance metric
- Respects underlying density and cluster structure

- Robust to model misspecification.

The spatial graph model

Summary: We define a random network model with edges determined by a latent metric.

The spatial graph model depends on the following latent quantities:

- p(x): latent probability density in compact connected smooth domain D C R¢;
- X =1{x1,...,
» en(X4i) 1 Xy — Rop: local scale function (may depend on A%,);

» h:R>9 — [0, 1]: connectivity kernel with h(x) =0 forx > 1, h(1) > 0, and h

left-continuous at 1.

XnJ: coordinate points drawn i.i.d. from p(x);

Definition 1: Spatial graph
The spatial graph G,, corresponding to €, and h is the random graph with:

= vertex set A ;

= a directed edge from x; to x; with probability h(|x; — Xj|€n(xi)_1).

Examples:
1. Directed k-NN: h(x) = 1,¢j0.1); €n(x) = distance to k' nearest neighbor.
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2. (Truncated) Gaussian kernel: h(x) =e GZ]X€O]] en(x) = bandwidth.

Continuum limits of random walks on the graph

Summary: We characterize the continuum limit of the simple random walk on a spatial

graph as an [t6 drift-diffusion process.

As the graph grows large (N — 00), suppose there exist scaling constants g, and a

deterministic continuous function € : D — R+, so that

1

a _1
n — 00, gn — O, gnna2 log(n)” &2 — oo,

Let Xi" be the simple random walk on the spatial graph G;,. A key observation:
For ¢, small and t large, the random variable X{* — Xy is the sum of many small

independent (but not identically distributed) increments.
Theorem 1: Continuum limit of the walk (Hashimoto-Sun-Jaakkola 2015)

The simple random walk X' converges uniformly in Skorokhod space D([0, c0), D)
after a time scaling t = tg2 to the It6 process Y; valued in the space of continuous
functions C([0, 0o), D) with reflecting boundary conditions on D defined by

dY; = Vlog(p(Ye))e(Y)?/3dE + €(V;)/V3dAW,.

Drift-diffusion process

Neighborhood restricted jumps

Random walk on graph

Figure 1 : An heuristic explanation of the scaling limit of Theorem 1.

Key idea: Attributes of stochastic processes (stationary distribution, hitting time) are
defined for both Y; and X{'. Often Theorem 1 implies the continuous attribute is a
rescaled limit of the discrete one.

en(x)gn] — €(x) for x € X,

From random walks to distances on unweighted graphs

Tatsunori B. Hashimoto', Yi Sun?,

Tommi S. Jaakkola’

'MIT CSAIL *MIT Mathematics

Application: Degeneracy of expected hitting time

Summary: Although expected hitting time between two vertices is a commonly used
measure of distance, we show it is degenerate for spatial graphs and recovers only the

inverse of the stationary density.

Notation: 1} = the hitting time of X' started at x; to X;.

Xj,M
A common measure of distance is:

Expected hitting time = E[T*_].

We show that this measure is unrelated to distance.

Theorem 2: Degeneracy of expected hitting time
For d > 2 and any 1,j, we have

E[T3) o 1
n CR(x%)

Note: Generalizes surprising result of von Luxburg-Radl-Hein 2014 in the undirected case.

Proof intuition:

1. Compare the hitting time of the simple random walk to its Ito process equivalent;

2. Compare the 1to process with Brownian motion and show by transience that it is
unlikely to hit quickly;

3. Conditioned on slow hitting, the random walk mixes before it hits, yielding the

stationary distribution.
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Figure 2 : Estimated distance from orange starting point on a k-nearest neighbor graph
constructed on two clusters. A and B show degeneracy of hitting times (Theorem 2). C,
D, and E show that log-LTHT interpolate between hitting time and shortest path.

Simulating Brownian motion on the latent space

Summary: We give a method to modify the transition probabilities of the random walk

on a spatial graph so trajectories converge to Brownian motion on the latent metric space.

Notation: g:(x,x;) = the probability of transitioning to x started at x; in t time.

We make a regularity assumption on transitions of the simple random walk:
For t = ©(g.%), nq¢(x,x;) is a.s. eventually uniformly equicontinuous. (%)

Hashimoto-Sun-Jaakkola 2015: under (%), can consistently estimate p(x) and €(x).

Theorem 3: Simulating Brownian motion on the latent space
Let P and € be consistent estimators of the density and local scale and A be the

adjacency matrix. Then the random walk 52{‘ with transitions defined below converges

to Brownian motion.
)
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« Attributes of reweighted walk — attributes of Brownian motion

= Brownian motion is simpler to analyze than general 1to process

2.0 2.0
1.5 1.5
1.0 1.0

0.5

0.0

-1.0

-1.5 -1.5
-2.0 -1.5 -1.0 —-0.5 0.0 0.5 1.0 15 -2.0 -1.5 -1.0 —-0.5 0.0 0.5 1.0 15

Figure 3 : Distributions of 40-step random walks on a k-nn graph with original and

Brownian weighting. Points drawn from Gaussian restricted to a disk.

Laplace transformed hitting time (LTHT)

Summary: We propose the Laplace transform of the hitting time as a metric estimator.

Our analysis of expected hitting time reveals the following drawbacks:
1. The expectation is dominated by long paths;
2. Long paths depend on regions of the graph unrelated to the geodesic.

Resolution: Consider the Laplace transform of the hitting time.

Definition 2: The scaled log-Laplace transformed hitting time
Let [3,, be a scale parameter. The scaled log Laplace transformed hitting time

(LTHT) is defined as:

—log(Ele 6“T’”‘ 1)/V2Pngn.

and can be computed via the matrix inverse for any transition matrix W

~1og(Elexp(—BTE)1)/12Bngn = —Log((I— W exp(—B));;)/i2Bngn.

« LTHT is closely related to rooted page rank [3] and potential distance [4];
« LTHT puts greater weight on shorter paths;
« LTHT avoids instability of shortest paths by averaging paths near the geodesic.

PDE Characterization: LTHT is solution to Feynman-Kac boundary value problem.

Theorem 4: Feynman-Kac for the Laplace transform
The LTHT u(x) =

boundary condition ujgg = 1:

;Tr[GTH(u) ol + u(x) - Vu— pu=0.

Elexp(—pRT¢)] is the solution to the boundary value problem with

LTHT is consistent

Summary: For scale parameter 3,, = ©(g2), a modification of LTHT gives consistent
metric recovery. We will consider hitting times to the s-neighborhood of a vertex x; in

G, the graph equivalent of the ball B(xy, s).

Modify LTHT using the following notations:
« s-neighborhood NB? (x) = estimated set of vertices within latent distance s of x;
TB (x,s) = hitting time of the transformed walk on G;, from x; to NB; (%;).

Theorem 5: Consistency of LTHT

Let xi, X; € Gp be connected by a geodesic not intersecting 0D. For any d > 0, there

exists a choice of 3 and s > 0 so that if B,, = BgZ, for large n we have whp

/J— [xi — x5 < d.

l— log (E[exp(—BnTi: (x),n

Proof intuition:

1. For Brownian motion W, started at x;, log-LTHT for TB o , the hitting time of W,

to B(x;j, s), recovers the latent metric.
Lemma 1
For any o« < 0, if B = s®

~as s — O we have

2ID/A2B — i —x;

2. By Theorem 1, discrete log-LTHT to B(xj, s) converges to continuous log-LTHT;

—log(Elexp(—B T,

3. Hitting time to s-neighborhood converges to hitting time to ball B(x;, s) of radius s.

Empirical consistency:
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Figure 4 : Estimated distance vs. true latent distance for different values of [3 on re-
weighted walks (simulated dataset) on a k-NN graph with 5000 vertices and k = 100.
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LTHT preserves clusters

Summary: LTHT learns a cluster preserving metric in 1-D without reweighting.

Consider the density-dependent metric

mx) = 2 10log(p(x)) ;5

e(x)2 B 0x? |

dlog(p(x)))

0X

which separates points in different clusters.

Theorem 6: LTHT preserves clusters without debiasing
Suppose d = 1 and h(x) = T4¢[p 7). The hitting time TXl

walk from x; to the out-neighborhood of x; converges to

/F%J J—dx+o(log +e_\/—/r)

of a simple random
n x]),n

— 1Og(E[—BTNlBi(

LTHT is robust

Summary: LTHT distinguishes between close and far vertices even when a large number

of non-geometric noise edges are added to the graph.

Noisy spatial graph: a mixture of spatial graph and Erdos-Renyi noise:

_Xj|€n(xi)_1)(1 —qgj(n)) + q;(n).
Two step log-LTHT: LTHT ignoring immediate hits:
M = — log(Elexp(— BT, | T, > 1),
Theorem 7: Two-step LTHT reduces to RA index

Edge from x; to x; with probability h(|x;

If B = w(log(gin)) and x; and x; have at least one common neighbor, then
M — 2B — —log(Ry;) + log(INB(x1)]).

where the directed RA index Ry; (well-known local vertex similarity measure) is

Rij := Z INB (x4) |

xk€NB, (xi)NN BiTQ (%;)

for out and in-neighborhood sets NB,,(x;) and NB!"(x;).

Robustness: RA index distinguishes close and far neighbors even under noise.
Theorem 8: Two-step LTHT is robust under extreme model deviations

If q; = q = 0(g%/?) for all 1, there are c1, c; and h,, so that for any i,j we have whp

Xi — %5 < min{en(xi), en(x)} if Rijhn < c1;

Xi — Xj| > Zmax{en(xi), En(Xj)} if Rijhn > (C).

Evaluation: Link prediction task

Summary: LTHT-based methods outperform benchmarks on two link prediction tasks.
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Figure 5 : LTHT recovers deleted edges Figure 6 : Two-step LTHT outperforms other

most consistently on a citation network techniques at word similarity estimation.

Link prediction: (Figure 5, KDD 2003 challenge data, 11,042 vertices and 222,027
edges): Given a network with edges deleted, how often does each method rank the true,
deleted edge above other missing edges. Log-LTHT and RA index both perform well.

Link weight prediction: (Figure 6, Associative thesaurus, 7754 vertices and 246,609
edges): Predict whether two words were associated often in a survey. Task is a classi-
fication problem for whether a link is strong (>10 mentions) or weak. Two-step LTHT

performs better than other methods.
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