Statistics 37793 — Topics in Deep Learning: Discriminative Models
Project Paper Lists

Batch normalization
— What does BatchNorm do? [IS15, STIM19, BGSW18, MBRB18, FSM20]
— Theory in special cases: [KDL*18, YPR19, LWSP19]
— Removing BatchNorm: [ZDM19, DS20]
— Possible projects: Study the effect of BatchNorm on quantities related to generalization
(trace of Hessian, etc.); study how hyperparameter choices change with/without BatchNorm.
Evolution of the NTK
— Neural tangent hierarchy: [HY19]
When is the NTK constant?: [JGH20, WGL*20, LZB20]
— Empirical study of the NTK change during training: [LBD*20, FDP+20]
— Package for computing the NTK: https://github.com/google/neural-tangents
Possible projects: Study how NTK dynamics change with network width; study effect of
optimization hyperparameters (momentum, weight decay, label smoothing) on NTK change.
Implicit bias of SGD
— Flat and sharp minima: [KMN*17, DPBB17]
— Batch size, learning rate, and gradient variance: [SKYL18, SL18, GDGT18, JKAT18]
— Theory in special cases: [SHNT18, GLSS19, CB20, LL20, WLLM20, WS19]
— Possible projects: Optimize hyperparameters for SGD on a new dataset; study how quantities
related to generalization (gradient variance, trace of Hessian, etc.) vary over training.
Data augmentation
— Standard augmentation techniques: [Bis95, SHK*14, DT17, ZCDLP18|
— Learning augmentation schedules: [CZM*19, CZSL19, HLS™19)
— Augmentations for robustness: [HMC™20]
— Theoretical analyses: [RFCT19, WZVR20, HS20]
Possible projects: Study the effect of augmentation on average-case robustness; compare
representations learned with and without data augmentation.
e Average-case robustness (distribution shift)
— CIFAR-10-C / ImageNet-C datasets: [HD19] (code at https://github.com/hendrycks/robustness)
Connecting average- and worst-case robustness: [FGCC19]
Shape vs. texture bias: [GRM™*19] (code at https://github.com/rgeirhos/texture-vs-shape)
— Many different robustness tasks: [HBM™20]
Distribution shift between different test sets for ImageNet and CIFAR-10: [RRSS19]
— Possible projects: Try to improve performance on CIFAR-10-C; test a new defense technique.
Worst-case robustness (adversarial examples)
— Original paper introducing adversarial examples: [GSS15]
— PGD attack and adversarial training: [MMS*19]
Breaking published defenses: [ACW18, TCBM20]
— Best practices for evaluation: [CAP*19]
Certified defense via randomized smoothing: [CRK19]
Attacks outside L,: [KSHT20]
— Possible projects: Evaluate a published defense; test a new defense technique.
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