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ABSTRACT. We provide Harish-Chandra type formulas for the multivariate Bessel functions and Heckman-
Opdam hypergeometric functions as representation-valued integrals over dressing orbits. Our expression is
the quasi-classical limit of the realization of Macdonald polynomials as traces of intertwiners of quantum
groups given by Etingof-Kirillov Jr. in [EK94]. Integration over the Liouville tori of the Gelfand-Tsetlin
integrable system and adjunction for higher Calogero-Moser Hamiltonians recovers and gives a new proof
of the integral realization over Gelfand-Tsetlin polytopes which appeared in the recent work [BG13] of

Borodin-Gorin on the 3-Jacobi corners ensemble.
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1. INTRODUCTION

The Heckman-Opdam hypergeometric functions are a family of real-analytic symmetric functions intro-
duced by Heckman-Opdam in [HO87, Hec87, Opd88a, Opd&8b] as joint eigenfunctions of the trigonometric
Calogero-Moser integrable system. The latter is a quasi-classical limit of the Macdonald-Ruijsenaars inte-
grable system, and in [BG13], Borodin-Gorin realized the Heckman-Opdam hypergeometric function as a
limit of the Macdonald polynomials under the quasi-classical scaling. By applying their limit transition to
Macdonald’s branching rule, they obtained a new formula for the Heckman-Opdam hypergeometric functions
as an integral over Gelfand-Tsetlin polytopes.

The purpose of the present work is to provide new Harish-Chandra type integral formulas for the Heckman-
Opdam hypergeometric functions as representation-valued integrals over dressing orbits of Uy. Our formu-
las are the quasi-classical limits of the expression given by Etingof-Kirillov Jr. in [EK94| for Macdonald
polynomials as representation-valued traces of Uy(gly)-intertwiners. In this limit, traces over irreducible
representations become integrals with respect to Liouville measure on the corresponding dressing orbit.

Integrating our formulas over Liouville tori of the Gelfand-Tsetlin integrable system yields an expression
for Heckman-Opdam hypergeometric functions as an integral of Uy-matrix elements over the Gelfand-Tsetlin
polytope. We identify these matrix elements as an application of higher Calogero-Moser Hamiltonians to
an explicit kernel. Taking adjoints of these Hamiltonians recovers and gives a new proof of the formula of
[BG13]. Our techniques involve a relation between spherical parts of rational Cherednik algebras of different
rank which is of independent interest.

In the remainder of the introduction, we summarize our motivations, give precise statements of our results,
and explain how they relate to other recent work.

1.1. Heckman-Opdam hypergeometric functions. Fix a complex number k& and a positive integer
N. The rational and trigonometric Calogero-Moser integrable systems in the variables {\;}1<;<n are the
quantum integrable systems with quadratic Hamiltonians

1
i i<j 7
. 1
Lys(k) =Y 07 —k(k+1))

. Xi—=N )
i<j 2 sinh? (T’)

They are completely integrable systems, meaning that Ly, (k) and Li78(k) fit into families Ly (k) and L& (k)
of commuting Hamiltonians defined for each symmetric polynomial p. Define conjugated versions of these
Hamiltonians by

(1.1) (k) = AN)* o Ly(k) o A(N)F
(1.2) TVB(k) = e T DM A (M) o LTE(R) o e r T DM A (),

where for a set of variables z, we denote by A(z) the Vandermonde determinant A(z) = [[,_;(2: — z;).
For each s = (s1,...,8n), the hypergeometric system corresponding to s was introduced in [HO87, Hec87,
Opd88a, Opd88b] as

—trig

(1.3) L, (k= 1) Fr(N, 8) = p(s)Fr(\, s).

The following characterization was given of certain joint eigenfunctions of this system known as Heckman-
Opdam hypergeometric functions.
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Theorem 1.1 ([HS94, Opd95])._ For each s, the hypergeometric system (1.3) has a unique symmetric real-
analytic solution Fy (A, s) for f;“g(k — 1), normalized so that Fj(0,s) = Fr(A,0) = 1. In addition, Fj(\, s)

extends to a holomorphic function of A on a symmetric tubular neighborhood of R™ C C".

The corresponding rational degenerations are a family of symmetric real-analytic joint eigenfunctions
Bi (A, s) of L,(k — 1) satisfying
(1.4) Ly(k = 1)Bi(\, 5) = p(s)Bi(A, 5)
and normalized so that By (0, s) = Bk(\,0) = 1. They are known as multivariate Bessel functions and have
been studied in [Dun92, dJ93, Opd93, 0097, GK02, FRO5].

1.2. Poisson-Lie group structure on uy and Upy. The Lie algebra gl = gly(C) has real Iwasawa
decomposition gl = uy @ by with by >~ u}. Let ty C uy be the Cartan subalgebra. We identify uj, with
pn, the trivial Lie algebra of N x N Hermitian matrices by the map  — $(z + 2*). Equip py with the
Kirillov-Kostant-Souriau Poisson structure, and denote the coadjoint orbit of a diagonal matrix A € py by
O,. We will use A interchangeably for the diagonal matrix and its sequence of diagonal entries. Denote the
symplectic form and Liouville measure on Oy by wy and dpuy, respectively, and let C[by] be the corresponding
Poisson algebra.

In the corresponding Iwasawa decomposition GLy = Uy By for the group, give Uy the Lu-Weinstein
Poisson-Lie structure (see [LW90]) so that By is the dual Poisson-Lie group to Uy. Let T C Uy denote
the diagonal torus. Identify By with the Poisson manifold Py; of N x N positive definite Hermitian matrices
via sym(b) = (b*b)/? so that sym intertwines the dressing and conjugation actions of Uy on By and Py
For A =¢* € P;, denote by Oy, wp, and duy the dressing orbit containing A, its symplectic form, and its
Liouville measure. Let C[By] and C[O,] denote the corresponding Poisson algebras; these algebras possess
a x-structure given by complex conjugation on each matrix element.

1.3. The main results. Restrict now to the case of positive integer k. Let Wj_; denote the Uy-representation
L((=1)(N 1), (k1) (—1) = Sym*TITCY @ (det) =7,

and choose an isomorphism Wj,_1[0] ~ C-wy_1 for some wy_1 € Wy_1[0] which spans the 1-dimensional zero
weight space Wi_1[0]. Let fr—1 : Ox = Wi_1 and Fi_1 : Opn — Wi_1 denote the unique Uy-equivariant
maps such that fr_1(A\) = Fr_1(A) = wi—1. Our main results are Theorems 4.1 and 5.2, which realize
the multivariate Bessel functions and Heckman-Opdam hypergeometric functions as representation-valued
integrals over coadjoint and dressing orbits under the identification of W;_1[0] ~ C - wy_; with C.

Theorem 4.1. The multivariate Bessel function Bg (A, s) admits the integral representation
I'(Nk)---T'(k)

(RN TLicj N = AR T j(s0 — 85)% 1 /XEOA

Theorem 5.2. The Heckman-Opdam hypergeometric function F (A, s) admits the integral representation

N sy
Flhs) = _ (Nk)---T(k) )/X O Fk_l(X)H((m> dpn,
85 —a) JAECA =1 -

RN [Licj(e™=

Froa(X)eXi =X dp,,

Bk‘(A’ S) = 1—\

j _AimAy k—1
—e 7 [y i<j(5i -
where X is the principal [ x [ submatrix of X.

Remark. The k = 1 case of the integral of Theorem 4.1 is the HCIZ integral of [HC57a, HC57b, 1Z80]. It
also generalizes the construction of [GK02], where a similar construction is made for k =1, 2.

1.4. Existing integral formulas and connection to $-Jacobi corners ensemble. Scalings of Heckman-
Opdam functions appeared in the work [BG13] of Borodin-Gorin on the -Jacobi corners ensemble, where
they were obtained as a certain scaling limit of the Macdonald polynomials P,(z;q,t). For Ay > --- > Ay €
RY, define the Gelfand-Tsetlin polytope to be

GTy = {(1h)r1<i<ii<ien | pih > pb > pltl},
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where we take ¥ = ;. A point {u!} in GT) is called a Gelfand-Tsetlin pattern. To state the result of
[BG13], we define the integral formulas

(1.5)
N-1 l I+1 1 I+11k—1
_N(N-1) N L_ =1 Hz’:l Hj:l |1 — M | 1
dr(, s) = D(k) 3 / e2mi=1 U0 =2 ) J z dpl
LEGT) 11;[1 [Tic I = ph P T It — TR 1;[1 '
and

(1.6) @k(A,S):p(k)f—N“Z*”/ HOSHETIO SIES Dyl
pneGT )

- l I+1 L I+ —
H ITizs Hj:ﬂe#‘_@% |F=1 ity

I | I | —(k=1) 3t pl | I !
e i=1 Hi d,u
I+1 +1 (2

_ e“j |k71 i

1 i
=1 Hi<j R Hi<j et =1

where (1.5) is a rational degeneration of (1.6). In [GKO02], the formula (1.5) was related to the multivariate
Bessel functions as follows; a related approach was given for k =1/2,1,2 in [FR05, Appendix C].

Theorem 1.2 ([GKO02, Section V]). For positive real k¥ > 0 and A\; > --- > Ay, the multivariate Bessel
function is given by
D(NE)---T(k) _ ¢w(As)

TN TLicy (e = A)F

Remark. We have adjusted the normalization of By (A, s) in Theorem 1.2 from [GK02] so that By (), 0) = 1.

Bk()\, S) =

In the trigonometric setting, the integral formula of (1.6) was realized by Borodin-Gorin as a scaling limit
of Macdonald polynomials. Applying this scaling to the eigenfunction relation for Macdonald polynomials,
they showed that @4 (), s) was an eigenfunction of the quadratic Calogero-Moser Hamiltonian L;’f;g (k—1).
Together with some arguments which we detail in Subsection 5.1 for k a positive integer, this relates @5 (A, s)
to Fr(A, s).

Theorem 1.3 ([BG13, Proposition 6.2]). For any positive real k > 0, @ (A, s) is the following scaling limit
of Macdonald polynomials

i (A, 5) = lim NPy (e e7F 7).
Theorem 1.4 ([BG13, Definition 6.1 and Proposition 6.3]). For any positive real k > 0 and Ay > -+ > Ap,
the Heckman-Opdam hypergeometric function is given by

Folhs) = I'(Nk)---T'(k) fﬁ<A78) _

K >\1

L(k)N Hi<j(6TJ 76_%)]“.

Remark. The integral formulas of Theorems 1.2 and 1.4 are stated only for \; > --- > Ay. We may extend
them to {A\; # A;} by imposing that F (), s) and Bg(), s) are symmetric in A. Under this extension, by
taking limits of relevant normalizations of (1.5) and (1.6) we may show that the expressions of Theorems
1.2 and 1.4 extend to A € RY. We give such arguments for the trigonometric case when k > 0 is a positive
integer in Subsection 5.1.

Remark. The main result of [KK96, Theorem 6.3] gives for each Weyl chamber a contour integral formula
for a solution to the hypergeometric system (1.3) holomorphic in that Weyl chamber. These formulas have
the same integrand as the integral of Theorem 1.4 but contours which are different for each Weyl chamber.

1.5. Realization via quasi-classical limit of quantum group intertwiners. The formula of Theorem
5.2 is the quasi-classical limit of the trace of an intertwiner of quantum group representations. We will
give a second approach to its proof using this theory; when combined with our first proof of Theorem 5.2,
this provides a new proof of Theorem 1.4 from [BG13]. Our approach proceeds via the degeneration of
U, (gl )-representations; we summarize the main idea in this subsection and give full details in Section 3.
For a dominant integral weight A, let L) denote the corresponding highest weight irreducible representation
of Ug(gly). Let p = 13 .o be half the sum of the positive roots. In [EK94], it was shown that there
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exists a unique intertwiner @iv S Lt (k=1)p = Lag(e—1)p ® Wr—1 of Uy(gly)-representations such that the
highest weight vector vxy (x—1), € Lay(k—1), is mapped to
DN (Vat(k-1)p) = Urt(k—1)p ® wi—1 + (lower order terms),

where the lower order terms have weight less than A+ (k—1)p in the Ly 1), tensor factor. They expressed
Macdonald polynomials in terms of these intertwiners in the following theorem.

Theorem 1.5 ([EK94, Theorem 1]). The Macdonald polynomial Py (z;¢?, ¢?*) is given by
Tr(®Y zh)

1.7 Py(2;¢%,¢*) = —2—<.
( ) /\(x7q 7q ) Tr(@(])\]xh)

We characterize both sides of (1.7) under the quasi-classical limit transition of [BG13] in the following
two results. Corollary 3.10 converts traces of quantum group representations to integrals over dressing orbits
to yield an integral expression for the limit. Theorem 3.14 uses the fact that the Macdonald difference
operators diagonalize both sides of (1.7) to show that this limiting integral is diagonalized by the quadratic
trigonometric Calogero-Moser Hamiltonian.

Corollary 3.10. For sequences of dominant integral signatures {,, } and real quantization parameters {q,, }

so that limy, o0 ¢ — 1 and limy, o0 —210g(gm ) A = A is dominant regular, we have

Jo, Fr-1(X )Hz 1 dgft)((Xl)) dpa
lim (—2log(gm))*N N -D/2p, (g:2%;¢2,,¢%) = = ( — ) :

k=1
meee [lozi [Tic;(si — 55— a)

Theorem 3.14. The trigonometric Calogero-Moser Hamiltonian f;zig(k) is diagonalized on

1 det(X;) 8t
X=X Y, i b—1 / Fk 1 H <det Xl 1 ) dUA
Hi<j(e = —e Tz )] si — 55 —a) JOa =1

a=1 i<j( ¢

with eigenvalue y, s7.

Remark. Combining these two results and our first proof of Theorem 5.2 yields a new proof of Theorem
1.4 which is independent of the results of [BG13].

Remark. In the recent paper [Sunl4], we give a representation theoretic proof of Macdonald’s branching
rule using a quantum analogue of the results of the present work. In particular, we identify diagonal
matrix elements of <I>§\V in the Gelfand-Tsetlin basis with the application of higher Macdonald-Ruijsenaars
Hamiltonians to a kernel. We then apply adjunction to the Etingof-Kirillov Jr. trace formula to recover the
branching rule. The link established in this paper between the expressions given in Theorem 5.2 and [BG13]
for the Heckman-Opdam hypergeometric functions is the quasiclassical limit of this argument and inspired
the approach of [Sunl4].

1.6. Outline of method and organization. We outline our approach. We first show that the quasi-
classical limit of the Etingof-Kirillov Jr. construction of Macdonald polynomials as traces of U,(gly)-
intertwiners corresponds to integrals over dressing orbits of By in Corollary 3.10 and that these integrals
diagonalize the quadratic Calogero-Moser Hamiltonian in Theorem 3.14. The Gelfand-Tsetlin action on these
dressing orbits then defines a classical integrable system whose moment map is the logarithmic Gelfand-
Tsetlin map GT of [FR96, AMO07]. Integration over the Liouville tori reduces the integral of Theorem 5.2
to an integral with respect to the Duistermaat-Heckman measure GT.(dua) on GT, which is the Lebesgue
measure. This yields an integral expression for ®5()\,s) over GT). The new integrand differs from that
of Theorem 1.4, but we show equality of the integrals by applying adjunction for higher Calogero-Moser
Hamiltonians.

The remainder of this paper is organized as follows. In Section 2, we give the geometric setup for our
integral formulas. In Section 3, we prove Corollary 3.10 and Theorem 3.14 by taking the quasi-classical limit
of the quantum group setting. In Section 4, we prove Theorem 4.1 in the rational setting, establishing in
particular the key Proposition 4.4. In Section 5, we use Proposition 4.4 to give another proof of Theorem
5.2 in the trigonometric setting via the formula of [BG13]. In Section 6, we provide proofs for some technical
lemmas whose proofs were deferred.
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2. GEOMETRIC SETUP

2.1. Notations. For sets of variables {z;} and {y;}, we denote the Vandermonde determinant by A(z) =
[i<;(zi — z;), and the product of differences by A(z,y) =[], ;(2: — y;)-

2.2. Gelfand-Tsetlin coordinates. Define the Gelfand-Tsetlin map gt : Oy — GT) by

gt(X) = { (X)) hi<i<ii<i<n,

where X is the principal [ x [ submatrix of X, and A\ (X;) > ... > N (X)) are its eigenvalues. Define the
logarithmic Gelfand-Tsetlin map GT : Op — GTy by

GT(X) = {log(Ai(X1)) hr<i<ii<i<n-

By a theorem of Ginzburg and Weinstein (see [GW92]), the Poisson structures we have described on by and
By make them isomorphic as Poisson manifolds. By [AMO7], there exists a Ginzburg-Weinstein isomorphism
by — By which intertwines the logarithmic and ordinary Gelfand-Tsetlin maps. In particular, this map
restricts to a symplectomorphism Oy — Oy.

2.3. Gelfand-Tsetlin integrable system. Let T := T} x --- X Tny_1 be a torus of dimension N(]gfl),

where dim7; = [. For t; € T; and X in Oy or O whose principal [ x [ submatrix X; is diagonalized by
X = UMNU}, the Gelfand-Tsetlin action of ¢; on X is defined as

where for Y; € U(l), the matrix Y; € Uy is defined to be the square block matrix
0

Y,

=
I

0
0 -+ 0]clyy

where ¢ is chosen so that Y; € Uy. The actions of 1} preserve [ x [ principal submatrices and pairwise
commute, giving actions of 7" on Oy and O,. These actions are Hamiltonian with moment maps gt and GT,
respectively, and the corresponding classical integrable system is known as the Gelfand-Tsetlin integrable
system (see [AMO7, GS83, FR96] for more about this integrable system).

We may use the Gelfand-Tsetlin action to write any X in gt=!(u) or GT™*(u) in a special form. Write
Xy as either uyAuj, or uyAuj, for some unitary matrix ux and decompose uy as

uy = (W) -+ (Wy_quN)

for uy, € U(m) and vy, 1= U, _,un, satisfying either

Ot ™05 )1 = ™0 ot (et 0l ey = e

where (M),,—1 denotes the principal (m — 1) x (m — 1) submatrix of a matrix M. Lemma 2.1 gives a

compatibility property between this decomposition and the Gelfand-Tsetlin action.

Lemma 2.1. For any [ < m and t,, € T;,, we have
tm . adgl..@N ()\) = adw..@m (tm . adgmyﬂ‘.@N ()\)), and
tm . adgl‘.,gN (A) = adgl. (tm -ad A))

U, Um-f—l"'iN(

Proof. By construction, the principal m x m submatrix of ads,,. ...y (A) is diagonal, implying that
tm - adg,..oy (A) = adady, 5, () (@dw,. 5y (A) = ady,..5, (b - adw,, 41y (A))-

An analogous proof yields the lemma for A in place of A. a
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2.4. Duistermaat-Heckman measures. The pushforwards gt, (duy) and GT,(dua) of the Liouville mea-
sures on Oy and Oy to GT), are called Duistermaat-Heckman measures. Because the Ginzburg-Weinstein
isomorphism intertwines the two Gelfand-Tsetlin maps, the two Duistermaat-Heckman measures on GT
coincide. It is known (see [GN50, Bar01, AB04, Section 5.6]) that the Duistermaat-Heckman measure for the
coadjoint orbit O is proportional to the Lebesgue measure on the Gelfand-Tsetlin polytope. To compute
the normalization constant, we recall Harish-Chandra’s formula (see [Kir99, Theorem 3, Section 3])

—1)w (wA,x)
(2.1) / (0:0) gy, = 2owew (ZD7ET
O [Lic;(@i —z)
which upon taking © — 0 (via x = ¢ - p and £ — 0) shows that

ITic; (X = A)
(N1

VOI(O,\) =

On the other hand, it is known (see [Ols13, Corollary 3.2]) that Vol(GT),) = W, meaning that
gt,(dpx) = 1o, - dr. This discussion establishes the following Proposition 2.2.

Proposition 2.2. The Duistermaat-Heckman measures gt, (duy) = GT.(dua) are equal to the Lebesgue
measure dx on the Gelfand-Tsetlin polytope. Explicitly, we have

gt, (duy) = GTu(dpa) = lar, dz.

3. QUASI-CLASSICAL LIMITS OF QUANTUM GROUP INTERTWINERS

+1/2) with generators

3.1. Finite-type quantum group. Let U,(gly) be the associative algebra over C(g
e, fifori=1,...,N—1 and qi%i fori=1,..., N and relations

by _hi 1 by _hi _1 by _hi _1 by _hi 1

q2eq 2 =q2e, q2ei—1q 2 =q €1, 2 fig 2 =q 2 fi, q2 fi-1q” 2 =q2 fi—1

Ry Ry ) o qhi*hi-pl _qhi+1*hi ) )
[q27ej]:[q27fj]:Of0r.]7éZ7Z_1a [ezafj]zéz_] q_q71 ) [eiaej]:[fivfj]zofor|Z_.]|>1

5 *%71 20, “Ne.e.e 2 =0 2 =y foff f2_0forli—ijl=1

q q - 5 eie] (q+q )616361+6]€i - Y fz f] (q+q )fzfjf2+f]fi - or ‘Z ]‘ -

We take the coproduct on Ug,(gly) defined by

hip1—h; hi—h;
Alei) =ei®q T g T @
hip1—hg hi—hit1
Alf)=fiwq 7 +q¢ 2 @f;

by

hy

by
2

and the antipode given by
S(ei) =—eiq™t,  S(fi)=—fie,  S(@")=q¢7"
Taking the x-structure on Uy (gly ) given by

ef = f; and fr=e and (q"/?) = /2
yields the x-Hopf algebra U, (ux). Its restriction to the algebra span of ¢"i/2 is the x-Hopf algebra U, (ty).
3.2. Macdonald polynomials and Etingof-Kirillov Jr. construction. Let p = (%7 ey %) and
let e, denote the elementary symmetric polynomial. For a partition ), the Macdonald polynomial Py (z; ¢2, t?)
is the joint polynomial eigenfunction with leading term 2* and eigenvalue e, (¢?*t2?) of the operators

t2r; —x;
T 2 42\ _ 4r(r—N) ? J
N,m(Qat)*t Z 4 H v —a; qu,b
|I|=ricl,j¢I
where Ty ;1 = [I,c; Tozi and Tz f (@1, ... 2n) = f(21,...,¢°%;, ..., 2N) so that we have

N (@) Pa(m; ¢, 1) = e (PMPP) P (a5 ¢, £7).
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Note that our normalization of DY, ,(¢?, %) differs from that of [Mac95]. In [EK94], Etingof and Kirillov Jr.
gave an interpretation of Macdonald polynomials in terms of representation-valued traces of Uy (gly ). For a
signature A, there exists a unique intertwiner

OVt Lyt k-1)p = Dot (e—1)p ® Wi1
normalized to send the highest weight vector vy (x—1), iIn Ly (k—1), to
Uxt(kh—1)p @ Wg—1 + (lower order terms),

where (lower order terms) denotes terms of weight lower than A+ (k — 1)p in the first tensor coordinate. As
shown in [EK94, Theorem 1] (reproduced as Theorem 1.5), traces of these intertwiners lie in Wj_1[0] = C -
wg_1 and yield Macdonald polynomials when interpreted as scalar functions via the identification wy_1 — 1.
The denominator also admits the following explicit form.

Proposition 3.1 ([EK94, Main Lemma]). On L_y),, the trace may be expressed explicitly as

Tr((I’éva:h) — (331 e ZN _ (k= 1)(N (k—1)(N-1) H H . q Jj]

a=11i<j
Remark. Our notation for Macdonald polynomials is related to that of [EK94] via PEE (z;¢,t) = Py (x;¢%, t?).

3.3. Braid group action, PBW theorem, and integral forms. In this section, we define an integral
form U, (gly) C Uq(gly) which will allow us to realize it as a quantum deformation of the Poisson algebra
C[By] in the sense of [dCP93, Section 11]. For this, we require Lusztig’s braid group action on U,(gly).
Following [Lus90], the braid group By = (T1,...,Tn-1 | Ti;Ti11T; = T;41T3Ti41) of type An_1 acts via
algebra automorphisms on U, (gly) by
T(ez) = —f‘qhi_hiJrl Ti(eiil) = q_leiilei — €;€i+1 Ti(ej) = ej fOI‘ |Z —]| > 1
Ti(f)) = —q¢ "rei  Ti(fixr) = afizafi — fifimm  Ti(f;) = fj for [i — j| > 1
T;(¢"*) = ¢ ”1/2 Ty(q"+ /%) = ¢"* Ty(q"/?) = " for j # i+ 1.

Let Uy (gly) be the smallest C[g*!/?])-subalgebra of U,(gly) containing

=(@—-q e fi=a—a i,
and stable under the action of By described above. For a choice of simple roots {aq,...,any—_1} and a fixed
decomposition wg = sy, « - - 8;,, of the longest word wg in Sy, let §; = s;, - s4,_, (oq) and define
€p = (q - q_l)Til T Tiz—l(el) and 7,81 = ((] - q_l)Til T Tiz—l(fl)'
By the PBW theorem, Uy (gly) has a C[q*'/?]-basis given by monomials

—k —k hF Inm b1
€ € fpn Iy

Following [dCP93, Section 10], assign such a monomial a degree of

M
1 -
deg (égi gk b ~-f§1> - (k:M,...,kl,ll,...,lM,Z(ki +li)ht(ﬁi)> € 72+,
i=1
where if § = )7, c;o; as the sum of simple roots, its height is ht(3) = »_,c;. The algebra Uj(gly) is a

Z2>A04 1 filtered algebra under the degree filtration, known as the de Concini-Kac filtration.

Proposition 3.2 ([dCP93, Section 10]). The associated graded of U, (gly) under the de Concini-Kac filtra-
tion is generated by @s,, f5,,q"/? subject to the relations

[éﬁmfﬁj] =0, €p,€p;, = q(ﬂi’ﬁj)éﬁjéﬁi for i > j, ?Bi?ﬁj = q(ﬁiﬁj)?ﬁj?ﬁi for i > 7.
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3.4. Infinitesimal dressing action and Poisson bracket. In what follows, we will consider functions on
By pulled back from matrix elements of PJJ\; via the map sym : By — P]J\? as in the statement of Theorem
5.2. The derivative of the dressing action of Uy on By yields a map of vector fields dr : uy — Vect(By)
called the infinitesimal dressing action. Let ¢ : C[By] — C[By]® C[By] and S : C[Byx] — C[By] denote the
coproduct and antipode on C[By]. In [Lu93], it is shown that the infinitesimal uy-action may be realized
via the Poisson bracket.

Proposition 3.3 ([Lu93, Theorem 3.10]). For f € C[By]| with §(f) = >, fi(l) ® fi(2), the infinitesimal
dressing action of df|. € T (By) ~ uy on C[By] is implemented via the vector field

oy == SUUY, -}

3.5. Degeneration of U, (gly). It is shown in [dCP93, Section 12] that Uy (gly) is a quantum deformation
of C[Bn]. To interpret this statement, let GLY%;, the Poisson-Lie group dual to GLy, be given explicitly by

GLy ={(9,f) | 9,f € GLy, g lower triangular, f upper triangular, g;; = fif} .

Taking the real form f* = g~ on GL% yields C[By] as the corresponding *-Poisson Hopf algebra. Under
this identification, we have the following result of [dCKP92].

Theorem 3.4 ([dCKP92, Theorem 7.6 and Remark 7.7(c)]). The algebra Uy (gly) satisfies:
1) Ul(gly) is flat over ClgE!/?);

2) we have an isomorphism Ul (gly) ® C(q"/?) ~ Uy(gly);
C[qil/‘z]

)
3) Ul(gly)/(¢"/* = 1)U/ (gly) is commutative;
4) there is an isomorphism of Hopf algebras

(
(
(
(
w2 Uy(gly)/(¢"/? = 1)U} (gly) — C[By]

which satisfies

(42 = 1) p]) = {r(), 7))

1/2
(5) = takes the special value W(qhi) = (%) .

Remark. Note that (4(¢"/? — 1))~![z,y] is a well-defined element of U} (gly) by Theorem 3.4(c).

For r which is not a root of unity, define ﬁr(g[N) to be the corresponding numerical specialization of
U,y(aly). Denote the specialization map by . : Ug(gly) — Ur(gly). Define also the map of C-algebras
@ : Uglgly) = Uglaly) by

(3.1) plei)=e, o(f)=F, od)=q"  el@=q"

Theorem 3.5. Fix z € Ug(gly). For sequences of dominant integral signatures {)\,,} and real quantization
parameters {¢m,} so that lim,, o ¢m — 1 and limy,, o0 —210g(¢m)Am = A is dominant regular, we have

lim (—2log( ))N<N71)/2 | (g, (2) . h)) / (¢(2)) INI det()XTl) ) d
! " I T z) - ) = T P ) ’
oot gldm Ir|z,,, (mq,, A o % 11 et (X 1) LA

where we consider Ly, as a representation of U,, (gly) and det(X;) as a function on By via composition
with sym : By — PJ’\; and where X is the principal [ x [ submatrix of X € Op C P]'V".
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Proof. Tt suffices to consider monomials z, for which we induct on degree. For the base case, monomials of
degree 0 lie in the Cartan subalgebra, so we have z = g2 2¢i" for some ¢;. In this case, we have

n}i_rgo(_Qlog(Qm))N(N_l)/QTrhAm (ﬂqm(z) . Q;Q(S’h))
= Jim (~2log(qn)) VNI, (80 X ekt

i(—¢+s;+c¢cj—s5)/m
— i (~2log(gu) vzl Catsite - s)m [ RNy,
m— o0 Hz(](e 2m — € 2m ) O)\m+/7

= lim ei(—citsi)Xii
m—r 00

d/.l_Q log(Q)(Amﬂ-P)
O _2105(q) Am+p)

/ IJ—V[< det(X;) )_Cl+sl di
= — A
On det(lel)

where the second equality follows from Kirillov’s character formula, the third from a change of variables and
(2.1), and the last by the Ginzburg-Weinstein isomorphism. The fact that

by Theorem 3.4 completes the base case.
Suppose that z = T[], ég’; 11, ?lﬂlb is a PBW monomial of non-zero degree and the claim holds for all

monomials of smaller degree. If all k; are 0, not all I; can be 0, so the limiting trace is 0; similarly, 7(z) is
not invariant under the torus action in this case, so the integral is also 0. Otherwise, let ¢* be minimal so

that k;= > 0, and write 2 = abc with a =e€g,., b = Egi’;*l [Liss Egiqh, and ¢ =[], flﬁ We then have that
Tre,,, (Mg, (2)4m M) = Tr|i,,, (g, (b€) 4> 7, (a))
= Trlr,,, (mq,, (bea)q, P g 20oM)
= 20Ty, (g, (abe + b, ale + Ble, g 2.
By the relations in Proposition 3.2, we see that
[b,a] = (¢"®Y —1)ab + (terms of lower degree)

for some function f(b,a). This means that [b,a] — (¢/®»% — 1)ab lies in a lower degree of the filtration than
ab. Solving for the new trace in the rewritten equation

Trlny,, (g (2)0,2%) = G205 T, (4, (a7 )2 + (b, ale — (/) — yabe) + ble,al) g, 2"

yields the solution

—(5Bie) g1 1/2 ~ (aF®9) _ Tyabe) + b
—2(s,h)y _ Gm 41 —gm ") ([b,alc — (q Jabe) +ble,al\ o p
Tr|Ly,, (7q,, (2)g """ = 1_q72(s,ﬁw)+f(b,a)Tr|L*m (”qm( 41— ¢1/2) )qm | )

Using the notation 7, := 7(¢(a)), m := w((b)), and 7. := 7(p(c)), notice that

([b, alc — (¢ ®®) — 1)abe) + ble, a]
! (w( A(1-q'/?)
)

1
)) = {7Tb»7ra}7rc + if(ba a)ﬂ—a’frb'n—c + 7Tb{7rcv7ra}~

Because ([b, alc — (/"% — 1)abc) + blc, a] lies in a lower degree of the filtration than abe, we conclude by
the inductive hypothesis that

(3.2)  lim (=2log(gm))N N V2Tr(, (7, (2)g,2")

m—o0

- —(s75i*)if(b, a)/2 /OA ({”"’”“}“C+ %f(b’“)””b’“”b{”c’”a}) 11 <djf(t)(§l)1)> dpa-

=1
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On the other hand, because integrating against Liouville measure kills Poisson brackets and

N det(Xl) 81 _ _ N det(Xl) B
{ll:ll (th(X'll)> 771'(6/31'*) = (S,Bi*)l:1 mﬂ(egﬁ),

we have that

o= [ fre TG o

=1

= / ({m, o e + mo{me, ma} + (8, Bix ) Tampe) H <det(Xl))>Sl dpp,

Oa =1 det(Xl,1

which implies that

/OA({%,%}WC + {7, Ta}) ﬁ ((myl dpp = — /OA(Syﬁi*)ﬂ'aTrbﬂ'cﬂ ((my dpiy.

=1 =1

Substituting this into (3.2) completes the induction by yielding the desired

N St
7Ta’/Tb7TCH <(16t(Xl>>> dpp .- O

1
! det(Xl,1

m
m—oo

(—210g(qm)) NNV 2TY( L, (7, (2)@ M) :/
Oa =1

3.6. Degenerations of intertwiners. We now degenerate <I>f\v to Fj_1, for which we wish to represent <I>]AV
as the evaluation of an element of U, (gl;)@W},—1 under the map ev : U;(gly) — Ende(Lag(k—1)p> Iat(k—1)p)-

Consider the space of invariants (U, (gly) ® Wi_1)Y4(8')  where the action is given by

(3.3) r(w@w) =) rayuS(ze) @ repw
in the Sweedler notation
A(g) (:L‘) = Zl‘(l) X T(2) X Z(3)-

We first show that this space of invariants maps to the space of intertwiners under evaluation.

Lemma 3.6. The action of the first tensor factor on Ly, (x—1), sends (U;(gly) ® Wi_1)Y4(8') to an inter-
twiner L)\+(k71)p — L)\Jr(k,l)p ® Wi_1.

Proof. Let z = ), x; ® w; be an element of (U;(gly) ® Wy,_1)Ya8') By invariance under Uy(gly), the
action of ¢ satisfies
=g =) g™ @ ¢thiw;,

?

Zmiqq:hj ® w; = Zqihjzi ® ¢ w;.
A A

which implies that

The action of €; satisfies

0= E] -z = Z (éjxiq(}bj_hj+l)/2 ® q—(hj—thrl)/Qwi

+ g =hitn) /2 g(hi=hi+1)/2 gjw; — qflq(hj*hj+1)/2xigj ® q(hj*hjﬂ)/?wi)’

h h

which upon noting that ¢ z;¢~" ® w; = x; ® g™ w; implies that

Z L€ @w; = Z <qq—(hj—hj+1)/2gjmiq—(hj—hj+1) ®q_(hj_h”1)wi +qxiq(hj_hj“)/2 ®q—(hj—hj+1)/2€jwi)

i

= (éﬂ% ® g~ (ha~ha+) 2y, 4 gha—has) 2, @ ejwi) = A(e))z.

A similar computation for f; yields that Y, 2;f; ® w; = A(f})z, so z gives the desired intertwiner. O



12 YI SUN

The degeneration 7 : U (gly) — C[By] and the automorphism ¢ of (3.1) give rise to a map
(mog)®1: (Ulaly) ® Wi—1)Ys®') — C[By] ® Wi_1.

The left dressing action on the first tensor factor gives a U(u,,) action on C[By]| ® Wj._1; we now show that
(m o) ®1 lands in the space of invariants for this action.

Lemma 3.7. The image of (U;(gly) ® Wi,—1)Ya8'%) under (7 0 @) ® 1 lies in (C[By] @ Wy_1)V(#).

Proof. Let z be an element of (U;(gly) ® Wi_1)Ua®%) and let 2/ = (70 @) ® 1)(z). Write z = Do T @ w
and 2/ = Y, 2] @ w; for 1 € Uj(gly), 27 = m(p(z1)) € C[By], and w; € Wi_;1. By invariance, z lies in
the zero weight space, so 2’ lies in the zero weight space of C[By] ® Wi_1. By definition of the action of
e; — fj € U,(gly) on z and the fact that z has weight 0, we have

0= Z (Ejfﬂlq(hj7hj+1)/2 @ qhit1=ha) 2y — g lgthi—his) /25 @ q(h]‘*h]‘+1)/2wl)
_ ZZ: (?jxlq(hj—hfrl)/z ® qh1=hi) 2y — qqhs—hie0)/20 T q(hj_hj+1)/2wl)
+ i (e g M=) 2 @ 2 ) — g Py M2 @ )
= z:l (qu(hj_hj“)pxl @ wy — xg;qhihir)/2 g wl)
- lz: (qu(hj_h”l)mml ® w; — xlqu(hj—hjﬂ)/? ® wl)
1

+ Z (q(hj*h_7’+1)/2xlq(hj*hj+1)/2 ® éjwl) — ghi=hi )24 o(hs=Ri11)/2 ?jwl)-
!

Dividing this equality by 4(q'/? —

1), noting that for any x we have
[gjq(hj*hjﬂ)/?’ z] =€ [q(hj*hﬁl)/?, ] + [e5, x]q(hj*hﬂl)/?

and
[fg hj— 7+1)/27$] — ?j[q(hj—hjﬂ)/?,x] + [?ﬁw]q(hj—hﬁl)/?’

applying (7 o ¢) ® 1, and multiplying by W(qhi—hi+1), we find that

ozz(ﬂth b )a(es — Ty (g™ 02), 0l + (g T 2) (e — ), al}) @ wn
+Z$z® i1 — Eip,g) - wi

—Z( M) (@ = T). ) = (@ — T) (a2 ) ) @
+le® Ji+1 = Ejrig) -,

where (Ej 41 — Ej41,5) - wy denotes the action of Ej j11 — Ejy1; € uy on wy € Wjy_1. By Proposition 3.3,
the dressing action of dr(€; — f;)lc is implemented by the vector field

Ontey—7,) = —m(a~ M) (s — Fy), =) + (s — Fy) (g0 h)/2) 1y,
which means that
(g )2 n(e; — f,), ) — w(E; — f){m(qMhoe)/2) ) = ~ e, 7, (1)

and hence that

Y One, 7 @) @w = sz Ejjr = Ejr1;) - wi.

l
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Under the identification T By ~ uy, we have dr(e; — ﬁ)\e = FEj 11— Ejq1; in uy by [dCKP92, Theorem
7.6(b)], so we conclude that 2z’ is invariant under the action of E; ;11 — Ej4+1,; € U(un). A similar argument
yields invariance under the action of ¢£; j41 + &4 ;, completing the proof. ([l

Lemma 3.8. For any k, there exists an element ¢, € U;(gly) ® Wi_1 so that
(mop) @ 1)(er)loy = Fr—1

and the intertwiner @f\v is implemented by cx|z, ey

Proof. We show that (U, (gly) ® Wi,—1)Ya(8'%) ig non-zero under the action of (3.3) and then normalize an
element of it appropriately. For this, we first show that it is non-zero under the adjoint action

(3.4) z (u@w) = Z ryuS(2(2)) @ T(3)W.

1. Showing the space of invariants for the action (3.4) is non-zero: Following [JL94], let F(U,(gly)) denote
the locally finite part of U, (gly) under the adjoint action. By [JL94, Theorem 7.4], there is an isomorphism

F(Uq(gln)) = Z(Uy(aly)) © Hy

for Z(U,(gly)) the center of Uy(gly) and H, a U,(gly)-submodule of F(U,(gly)) under the adjoint action
which is a direct sum of dim V[O] copies of each ﬁmte dimensional representation V' of U,(gly). Because
W_, has a one-dimensional zero weight space, there exists an embedding W} ;| — U,(gly) of Uy(gly)-
representations and therefore a non-zero invariant element under the action of (3.4).

2. Showing the space of invariants for the action (3.8) is non-zero: Let P denote the transposition map and
R the universal R-matrix of U, (gly) and let P23 and Ra3 denote their application in the second and third
tensor factor. Consider the diagram of maps of U, (gly )-representations

PazRos3

Ug(gly) @ Wi @ Ug(sly) Ug(gly) @ Ug(gly) @ Wi—s

(mlg o Sg) ®1 (m12 o SQ) ®1

(Ug(gln) @ Wi—1)(3.3) (Ug(gln) @ Wi—1)(3.4)
2 (gt

where the Uy (gl )-actions on U, (gl ) @ W}, _1 are given by (3.3) and (3.4) as specified. We claim that Pa3Ro3
maps the kernels K3 and Ky of (mi130S3) ® 1 and (my2 0S2) ® 1 to each other. Indeed, if Y, u; ® v; ® w;
is in K>, then writing R =}, a; ® b;, we see that

((m13 0 53) ® 1)P23Ra3 ( Z U Qv ® wi)

= ((m130853) ® 1)(Zuz ® bjw; ®ajvi) Zul v;)S(aj) ® bjw; =0,
%,
where we note that
((m12 o) 52) ® 1)(2’&1 X v; ®’LUZ) = ZUZS(vl) R w; = 0.
A similar argument shows that (Pa3R23) ' maps K3 to Ka. Now, we showed that (U} (gly) @ Wi 1)(3 ESIN)

is non-zero. Choose a one-dimensional space of such invariants and let its preimage under (mis 0 S3) ® 1
be V. C U,(gly) ® Uy(gly) ® Wi—1 so that V/K;3 ~ C as U, (gly)-representations. We conclude that

Pa3Raz(V) /K2 ~ C, implying that (U;(gly) ® kal)g‘%g[m is non-zero.

U;(E[N)
(3.3)
that by Lemma 3.6, we have <I>f\v = Ck|LA+(,¢,_1)p~ Now, by Lemma 3.7, the image of ¢ under ((mop)®1) lies
n (C[By] ® Wi_1)V“~). On the other hand, because dim W;_,[0] = 1, by [Ric79, Theorem A], W}, has
multiplicity 1 as a U(uy)-representation in C[By], so (C[Bx] ® Wi_1)Y®~) has dimension 1. In particular,
this means that ((7 o ) ® 1)(cx) restricts to a non-zero multiple of Fy_; in (C[Ox] ® Wy_1)V®~). Because

8. Choosing a normalized invariant: Choose a non-zero element ¢, € (U (gly) @Wp—1) , normalized so
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the normalization of ¢; agrees with that of @iv, the projection of ¢; to Ué(tN) ® wy_1 must be 1 ® wr_1,
which implies that the restriction of the wy_1-component of ((m o ¢) ® 1)(cx) to C[Tn] is 1 and hence that

(mrop)®1)(ck)loy = Fr-1. O

Corollary 3.9. For sequences of dominant integral signatures {\,,} and real quantization parameters {¢,, }
so that limy,, o0 ¢ — 1 and limy, o0 —210g(gm ) Ay = A is dominant regular, we have

N s
. _ _ det(X;) !
| —2log(q,,))NN-D/2T ON ). g=2(s:h) :/ X diin.
im_(~210g(q,.) Honssemnn @) 020 = [ Fa 1 (i) o

Proof. This follows by combining Theorem 3.5 and Lemma 3.8. ]

Corollary 3.10. For sequences of dominant integral signatures {\,,} and real quantization parameters {¢,, }
so that limy, o0 ¢ — 1 and limy, oo —210g(gm ) Ay = A is dominant regular, we have

Jo, Frm1(X )Hz 1 (dgft)(cxl))) dua
77}i—r>n<>o(_2 log(qm))kN(N—l)/QP)\m (qm ) Qm7 q?r?) - - Hk 1 (5 S l la) .
a=1 i<j i S5 —

Proof. Set A, = mA+ (k— 1)p in Corollary 3.9 and explicitly take the limit in Proposition 3.1. ]

3.7. Degeneration of Macdonald operators. We now put everything together to show that the limiting
integral expression satisfies a differential equation in the indices. This differential equation will be a scaling
limit of the difference equations satisfied as a result of the Macdonald symmetry identity, recalled below.
For this, we abuse notation to write DTN,qmﬂkp for difference operators acting on additive indices A as well

2A+2ke - Denote also by [a], the g-number [a], := q;__qq:f and [a],; the falling

as multiplicative variables ¢
g-factorial [a]y; :==[alq- - [a — 1+ 1],.

Proposition 3.11 (Macdonald symmetry identity). We have

M= +E(G—0)+k—1gk
P/\(q2,u+2kp; q27q2k) — g i )
11 (i = pj + k(G = @) + k= Ugp

22+2kp.

P.(q 1q2,¢%F).

Proposition 3.12. The operator
Dy orezna (67, 67F) = [T = X5 + 50 —8) + k= gk 0 Dy goxeano (6% 6% o [ [N = X + R =)+ k= 1] 4
1< i<j

satisfies

Y I i = A+ k(G — i) + Kl — N + k(G — i) —k+1]

D 22+2kp ) — 1 | — 1
Nogvsans (@ 0% i =X kG = DD = A+ RG =)+ 1,

[I|=ri€l,j¢I,i>j

and

DYy oxionn (6, F) Pal; %, ¢°F) = en(2) Pa(a; 4%, ¢°).

Proof. The expression for ﬁ]rv,qz siane (@2, @%F) follows by direct computation, and the eigenvalue identity from
the Macdonald symmetry identity. O

Consider now the operator
Di(q) = Djl\l L2 T2k (q N'e ) - 2D12V,qzx+2kp (q2,q2k) - 2D]1v,q2k+2kp (q2>q2k) +N.
By Proposition 3.12, Dy(q) acts by >, (z; — 1)* on
LI = Aonj + kG = ) + k= 153 Pa(as ¢, ¢*).
i<j

We characterize the scaling limit of Dy(q) as a second-order differential operator in the following lemma,
whose proof is computational and deferred to Subsection 6.1
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Lemma 3.13. Suppose that {f,,} is a sequence of functions so that for {g, } and { A, } with lim, o0 ¢m =1
and lim,, 00 —210g(¢m)Am = A, we have lim, o0 frn(Am; gm) = f(A) for a twice-differentiable function f.

Then we have
—trig

limoo(_zlog(Qm))_zD/\m (qm)fm()‘m§ Qm) = Lp2 (k)f()‘)

m—r
Combining Lemma 3.13 and our results on the degeneration of Macdonald polynomials implies that our
representation-valued integrals are diagonalized by the trigonometric Calogero-Moser Hamiltonian.
Theorem 3.14. The trigonometric Calogero-Moser Hamiltonian f;zlg(k;) is diagonalized on
1 N

det(X7) \*
Fea (] < ) J
Ai—Aj Xi—X; _ / e 1 m
Hi<j(e p) 2 — e p) 4 )k H'Z:} H’L<j(sl — S] — a,) Op =1 det Xl 1

with eigenvalue ), s7.

Proof. Take any sequence {¢,,} and {\;,} so that lim,;,— 00 ¢, = 1 and lim,, o —2log(gm)Am = A; for
instance, we may take ¢,, = e~*/?>™ and \,, = |[m\]. Notice that

3 kEN(N-1)/2 L ) S _ _ X=X _ R I
W%E;noo(Q log(Q'm)) H[)\m,z Am,_y + k(] Z) —+ k l]lJmJC H(e P) e 5 )

i<j i<j

so that by Corollary 3.10 we have

lim (=)D TN = Ay + kG — ) + k= 1)1 Py (002 400 00

m—0o0 " -
1<]g
det (X !
foA Fr1(X )Hz 1 (det Xll)l)) dpp
>‘i_)‘j _>‘1 )\J k k—1 .
Hi<j(e 2 —-€ 2 ) Ha 1 l<](8i_sj _a)
Note now that Dy,, (¢m) acts by >, (z; — 1)2 = >, (g,,%% — 1)?

T = A + kG =)+ k=10, P (007 00 40,

i<j

— R(N=D/25, A

where lim, o0 (—210g(gm)) 72 >, (g% — 1)*> = 3, s7. Therefore, by Lemma 3.13, we have

det(X
foAde( >Hl l(def)‘(ﬁi)) dpia
DY

A
[Tic;(e™ )kH i<j(8i — 85 —a)
= lim (—1)’“N(N‘”/2(—2log(qm))‘r“Dxm (@m) [T = A + kG =)+ k=10, Pa (007 07 48

1<)

S1
fo F1(X )Hl 1(%) diia

— E 2 A
- ( 81) Xi—Aj -

2imAG N k—1 ’
i [Lelem=2 —e > SDLE § i<j(8i —sj —a)

—trig

L,," (k)

4. THE RATIONAL CASE

4.1. Statement of the result. Recall that fr_1 : Oy — Wy_1 is the unique Upy-equivariant map so that
fe—1(A\) = wg—1. Define the representation-valued integral

YA, 5) :/ fkfl(X)ele\;lle”duA
XEOA

over the coadjoint orbit Oy. The integrand and Liouville measure are invariant under the action of the
maximal torus of Uy, so 9 (A, s) lies in Wj_1[0] = C-wj—1. We interpret the integrals ¢ (), s) as complex-
valued functions by identifying C - wy_1 with C. Our first result relates these integrals to the multivariate
Bessel functions.
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Theorem 4.1. The multivariate Bessel function By (A, s) admits the integral representation
I'(Nk)---T'(k) /
PN TLic; N = X)L (si = 55)F " Jxeo,

4.2. Adjoints of rational Calogero-Moser operators The rational Dunkl operators in variables u; are

Bi(A, s) = Fro1(X)eZir s Xugy,

(4.1)

Sij)7

3751
where s;; exchanges p; and p;. Let m denote the restriction of a differential-difference operator to its
differential part. For a symmetric polynomial p, recall that

m(p(Dy, (k) = Lp(k),
for L,(k) was defined in (1.1) as a conjugate of the rational Calogero-Moser Hamiltonian corresponding
to p. Define D, (k)" := —D,, (k) to be the formal adjoint for D,, (k) with respect to the inner product

9) = [ fF(w)g(p)A(u)~**du. We characterize the adjoint of L, (k) in terms of D, (k)T by Proposition 4.2.
For multi-indices « = (;) and 8 = (5;), write 8 < « if a;; < 3; for all 4.

Proposition 4.2. Let A be a rectangular domain. Let p = > cou® be a symmetric function and f and
g be symmetric functions on A. If for each non-zero monomial u® appearing in p, 85 f vanishes on the
boundary of A for any 8 < «, then we have the adjunction relation

/A (Lp (k) f(10) G(1) Ap) > dp = /A F() m(p(D,, (k)1 (G(1)) A(p) " dp.

Proof. If A is replaced by RY | the statement holds because the adjoint and formal adjoint of D,,, (k) coincide.
The adjoint of fp(k) as a differential operator does not depend on the domain. Therefore, integration by
parts shows the two sides of the desired relation differ by the sum of several terms, each of which contains a
factor which is the evaluation of 85( f) on a point of the boundary of A for some 8 < o with pu® appearing
in p. These terms vanish, giving the lemma. O

4.3. A matrix element computation. Recall that sequences {\; }1<i<n and {u;}1<i<n—1 interlace if
A2 p1 > A2 2 ANC1 2 UN-1 = AN,
which we denote by u < A. Define the real matrix u(u, \) by

M)”Q .
U(,u,/\)ij = (Hl;éj()\l—AJ)

e ((ILGu=a) Y2 I ou—m) \Y?
(Aj = ) (711;]-(&—»)) (fnl;iw—m)) i< N,

where each square root is applied to a non-negative real number because u < A, and we take the non-negative
branch. The following lemma, whose proof is given in Section 6.2, shows that u(u, \) conjugates a diagonal
matrix to a matrix with diagonal principal submatrix.

Lemma 4.3. The matrix u(u, A) is unitary, and the (N — 1) x (N — 1) principal submatrix of
u(p, A) diag(Ar, - .., An) u(p, A)*
is diag(p1, .-, bN—1)-

We would like to understand a specific matrix element of u(u, A) in Wy_;. For this, notice that Wj_; ~
Sym(k_l)N(CN as an SUy-representation via an isomorphism sending wy_1 to (zy---zy5)* L.
compute an auxiliary quantity. Let Z, (i1, \) denote the coefficient of (7 - --2;)* in the polynomial

N—1 k
ZN+1'H<ZM>\ taytota )

By Proposition 4.4, we may express Zi(u, A) via a conjugated Calogero-Moser Hamiltonian, where we recall
that L,(k) was defined in (1.1); we defer the proof to Section 6.3. The computation of the desired matrix
element of u(u, \) is an easy consequence.

We now
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Proposition 4.4. We may write
Zk(/l’7 >‘) = kli(N?l)A(,uv A)ikz,uNfl"',ul (k)kA(.u’a A)k

Remark. It is convenient for us to formulate and prove Proposition 4.4 for general [. However, in our main
application Lemma 4.5, it will be only be used with [ = N.

k-1 k—1

Lemma 4.5. The coefficient of (z1---xn_1) inu(p,A) - (1 axn—1)"tis
(—1)BmONN=D2 (G — )=V A () AN T (Lo (B = DT EA(, A

Proof. By Lemma 4.3, the desired coeflicient is given by

- - Ap, )M
k—1)(N+2)(N—-1)/2 )
(_1)( Y(N+2)( )/ A(’u)kflA()\)kfl Zk_l(/,é, A),

which by Proposition 4.4 is equal to

(71)(k71)(N+2)(N71)/2(k _ 1)!7<N71)A(p)17kA(>\)17kf

uN—1-

(b = DF1A >, A,
To recover the desired form, it remains to notice that

(_I)NilfuNfl“'ul (k - 1)k71 = (le‘N—l"‘Nl (k - l)kil)T' U

4.4. Proof of Theorem 4.1. Integrating over Liouville tori of the Gelfand-Tsetlin integrable system on
O, yields the expression

ava=f ] Fia (£ Xo)dt == Za g (),
pHEGT ) JteT, XoEgt—1 (1)

where dt is an invariant probability measure on 7' and p! are the Gelfand-Tsetlin coordinates. Recall that
gt,(duy) is equal to Lebesgue measure on GT) by Proposition 2.2. Adopting the notations of Section 2.3,
by repeated application of Lemma 2.1 we have for t = ¢1 ---txy_1 in the Gelfand-Tsetlin torus that

t- Xo=ad(v1)t: -ad(T2) - - ty—1 -ad(Un) - A

On the other hand, if w € Wjy_; lies in Clay,...,z)(z141 - ~-:vN)k*1 under the identification of Wj_1 ~
Sym*"UNCN of SUy-representations, then

/ t; - wdt; = {coefficient of (zy--- zy)* 1 in wh.
T

Together, these imply that

N—-1
/ fer(t- Xo)dt = [ W,
teT,XoEgt—1 (1) me—1

where W, denotes the coefficient of (1 - -+ 2,,)* ! in v, - (21 -+ T )* 1. Recall that v, was chosen so that

(v diag(p™ )0k ) = diag(p™), meaning by Lemma 4.5 that

A(,um um+1)k—1
Wy, = ’ Z—q (™, pm
A(pm)k=TA(pm+1yk—1 L

(_1)(k71)m(m+1)/2(k o 1)!7m .

= A(/.Lm)k_lA(/,Lm"'l)k_l (Lﬂl“'#m (k - 1)T)k71A(Nm7:um+l)kil'

Substituting in this result, inducting on N, applying the integral formula (1.5), and applying the shift formula

(4.2) e 21, 8) = Pr(p, 514 €, SN 1+ 0)
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for the integral expressions (1.5) in N — 1 variables with ¢ = —sy, we obtain

N—-1
N 1 -1
Pr(\, 8) =/ Wipeizt 510w =2 ) T dpd
pneGTy ngl H

=T(k)™ Zy_qetN A=) si—5;) " Tow(p,s) | [ dps
<A !
® i

1<i<j<N-1

= SN L Mp(k)™N H (5;i —s5)F 7t )\WN_lefsN i “igbk(u,sl,...,sN_l)Hdui
1<i<j<N-1 K= i
— (_1)(k71)N(N71)/2€sN > )\ir(k)fN
H (S _ S')k_l/ (ZHI"'N/N—I(k B 1)T)k_1A(/‘a)‘>k_l
i Jj

<A A(p)FTAN)ET d)k(u’sl_SN""’SN*I_SN)HC[M-
1<i<j<N-1 . i

Applying Proposition 4.2, (4.2), and (1.4) to the last expression yields the desired expression

SNE)\l
€ g _ _ _ _
wk(A’s):iA(A)kfl _1)(k 1)N(N 1)/21“(k) N H (Si—Sj)k 1
1<i<j<N—1
A(:U/vA)k_l T

\ W(Lm---mq(k - 1))k_1A(N)k_1¢k(/~h 81— SN,--.,SN-1 — SN) Hdm
p= i

A, \)F1 — 1 -
— SN2 )\i(_1)(k—1)N(N_1)/2I‘(k)—N H (Si N sj)k—l/ (/1'7 ) ¢k(/1'731 SN, )y SN—1 SN) Hd/iz

1<i<j<N P=A A(p)F=tA(N)FE ;
:esNZi}w H (Si—Sj)k_l(bk()\,Sl—SN,...,SN,1—8N70)
1<i<j<N
= H (5i — 8)" Lor (N, 5).
1<i<j<N

The result now follows from Theorem 1.2.

5. THE TRIGONOMETRIC CASE

5.1. Identifying (), s) with the Heckman-Opdam hypergeometric functions. In this subsection,
we provide details of how to relate the integral formula (1.6) for ®x (A, s) to the Heckman-Opdam hyperge-
ometric function Fj (A, s) for the case where k > 0 is a positive integer. We will use the characterization of
Theorem 1.1. First, we claim that the symmetric extension of e*(V=1)/22: X A(e}) =@y (), 5) extends to a
holomorphic function of A on a symmetric tubular neighborhood of RY. Observe that (1.6) has the recursive
structure

(5.1) Dr(\,5) (—1) DN o (5, 05, i) — (k1) 5, s Aler, M) TA(eH) O (p, 515 - - SN—l)d’u
' H=A Afer)t A(er)k '

A(e)\)k

We induct on N with trivial base case. For the inductive step, change variables to 7; = %ﬁ‘\i We obtain

7

Dr(N, s) / (r=DN(N-1) ; _ N (ke .
RN T —1 ] >\7, _ /\z sn (D2 A =22, mi)—(k=1) 32, i
ANk [0,1]N—1( ) | |( t1)e

Aet, M) TA(e!) B py s, sn-1)
A(eN)2ET A(er)k

where we view p as a function of 7 and A in the integrand. As a function of A, the integrand is meromorphic
with poles away from the set {A\; # A;}. It is easy to check that there are no poles on the subsets of
hyperplanes A\; = A;4y; where no other coordinates are equal, so by Hartog’s theorem, the integrand is
holomorphic in A. By the induction hypothesis, it is also holomorphic in 7, hence the result is holomorphic
in A and admits the claimed extension.

T,
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We now claim that e#(N=1/22: A A (e )7k d, (), s) satisfies the hypergeometric system; it suffices to show
L;fig(k — DPg(A, s) = p(s)Pr(N, s)
for any symmetric p. It was shown in [BG13, Proposition 6.3] that
L;f;g(k: — 1)®k(A, 5) = pa(s5)Pr(N, 5)
for Ay > --- > Ay. If s is not integral, choose w € Sy so that ws is dominant; a straightforward induction
using (5.1) shows that @4 (), s) admits a series expansion of the form
Dr(A,8) = ce(wsN) =k (N—w(@)Ai 4 (Lo.t.),
where ¢ is a non-zero coefficient dependent only on s and we use (l.o.t.) to denote terms of the form

CaeWs N =R (N—w(@)Ai—(wad) for o in the positive weight lattice. By the results of [HS94, Section 4.2], for
such s, any analytic symmetric eigenfunction of L;r;g(k — 1) with leading monomial

e(ws,)\)—k Si(N—=w(i)) A

diagonalizes L;fig (k —1) for any p. Therefore, e#(N=1/23%; Ai % satisfies the full hypergeometric system
and is a scalar multiple of Fj (), s).
For generic s, we compute the normalization constant. For this, we claim by induction on N that

N
lim eF(N-1)/23; i (A s) _ 1i (A s) _ L'(k)

D0 A(N)F ~ a50 A(eME T T(Nk)---D(k)
The base case N = 2 is the beta integral. Assuming the inductive hypothesis, we have by (5.1), Taylor
expansion in p, application of the Dixon-Anderson integral (see [Forl0, Equation (4.15)]), and the inductive
hypothesis that

k—1 P
(I)k:(>\a8) — lim F(k)_(N_l)/ A(Mv)‘) A(/L) k(’u7817’8N71)d,LL
=X\

A0 A(eME T A50 A(N)2E—T INDDE
o veny TR L(k)N-1
=Tk~ T(Nk) T((N—1)k)---T(k)

_ T~
" I(Nk)---T(k)
This implies that
Fulhs) = [(NEk)---D(k) ®x(X, s)

LR Aer)k
for non-integral s. Both sides of the expression are holomorphic functions of s, so this continues to hold for
non-generic s, yielding Theorem 1.4.

5.2. Some properties of ®;(A,s). In this subsection, we state some properties of @ (A, s) which we will
need later. As in the rational setting, we have a shift identity

(5.2) eczikifbk()\,s):@k()\,sl +c¢...,88 +0).
The shift identity allows us to prove Lemma 5.1, which shows how f;rig(k: — 1) acts on Dy (u, s).

Lemma 5.1. For any symmetric polynomial p, we have

S (T R . 1) P
Proof. Using (1.2) and the shift identity (5.2) for @y (u,s), we compute
A(e") L, (k — DA g g 5)
— e—% > mL;rig(k _ 1%% > Ky, 5)
B Y (. L B L £ ()

=p<81+(]\/‘_2)2(k_1),...,81\[1+(]v_2;(k_1)> D, s). O



20 YI SUN

5.3. Statement of the result. Let Fy_1 : Ox — Wj_1 be the unique Upy-equivariant map so that
Fr—1(A) = wi_1. Define the representation-valued integral

N sy

where X; denotes the principal [ x [ submatrix of X. As in the rational case, the integrand and Liouville
measure in the definition of Uy (), s) are invariant under the action of the maximal torus of U, so Uy (), s)
lies in Wj,_1[0] = C - wy_1. We will again interpret it as a complex-valued function via the identification of
C-wg—1 with C. Our result in the trigonometric setting uses these integrals to express the Heckman-Opdam
hypergeometric functions.

Theorem 5.2. The Heckman-Opdam hypergeometric function F (A, s) admits the integral representation

_ <Nk> <k> N det(X) )
fk(A’S)_r(k)NHKj(e”;” )’“H iej(si— 55— a) /)ceoAFk_l(X)ll:[l(det(le)> A

where X is the principal [ x [ submatrix of X.

5.4. Adjoints of trigonometric Calogero-Moser operators. The trigonometric Dunkl operators in
variables u; are defined by

1
=0; — k Z(%Mi)m(l — 8a) + k(p, pi)-
a>0
For a symmetric polynomial p, m(p(T), (k))) = f;rig(k:) is the conjugate (1.2) of the trigonometric Calogero-
Moser Hamiltonian corresponding to p.

Remark. Our sign convention for T}, (k) is opposite from [Hec97] for consistency with the rational case.

We require also the following result on adjoints of T),,(k). By [Opd88a, Lemma 7.8], the formal adjoint
of T,,, (k) with respect to the inner product

g = [ g ne)

is given by
t_ _p, et y N_
(5.3) T, (k) = -0, + kz o (1= si) kY — o (L= si) +k ( 5 z>
i<t Jj>i
N 2
= -9, +kze“7_€” —sij) + kY sy —k———
VE J>1
k) —stij +/€ZSZ]
j<i j>i

We may again characterize the adjoint of f:,“g(k:) in terms of its formal adjoint by Proposition 5.3.

Proposition 5.3. Let A be a rectangular domain. Let p = > copu® be a symmetric function and f and
g be symmetric functions on A. If for each non-zero monomial u® appearing in p, 35 f vanishes on the
boundary of A for any 8 < a, then we have the adjunction relation

/A@L“%)fw» g(u) Ae)~dy = /A F) mp(T() ) @) Ae®) " d.

Proof. The proof is the same as for Proposition 4.2. O
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5.5. Matrix elements in the trigonometric case. Take [ > N — 1 and consider variables Aq,...,\; and
U1, -, un—1. Recall that Zy(e#, e) denotes the coefficient of (z; ---z;)* in the polynomial

k

N-1
l—N—i—l'H(Ze“l—e)‘ TNt >

We express Z(e#, ) via trigonometric Calogero-Moser Hamiltonians in Proposition 5.4.

Proposition 5.4. We have the identity

Il k
Zi(et,et) = (~1)N IV =D A (et M) F ( X 'ﬁzgvll(m_k¥)(kﬁ) Ae!, etk

Proof. We use the result in the rational case. By Proposition 4.4 and (1.2), it suffices to check that

_ . _ N -2 N -2
e X ()N (T (0) = k== ) -+ (T, (B)' = k== ) = Dot (k) -+ Do (k)
on Cleti]5N-1. We may rewrite T}, (k) in the form
et N -2
(54) th(k) zam kgelh—eﬂj(lsu :ZCZSU +k7 76‘” pu kZSU +l{j7
VE) j<t 7<t

where Dex; (k) is the rational Dunkl operator in the exponential variables e#i. By (5.4), we see that
o N -2
Dw; (k) =e M (’TM (k’) — k; Sij + k’T)

Further, we may check that 7),,(k)e * = e #i (T}, (k) — ks;;), so shifting each e™* term to the beginning
of the expression, we see by (5.4) and (5.3) that

N-1
Dyr (k)< Do (k) = & = T (T3 (6 =k 3y 4 kY s+ ko)
=1 <z Jj>1
Pl N -2
=B YT (1) - k=), .

5.6. Proof of Theorem 5.2. We again compute Uy (\, s) by integrating over the Liouville tori given by
the Gelfand-Tsetlin coordinates. We may write

(5.5) Ui (A, s) :/ / Fr_1(t- Xo)dter\Ll IOMNTED N ”2_1)GT*(duA),
€GTy JteT, Xo€GT(p)

where dt is the invariant probability measure on the torus, and ul are the logarithmic Gelfand-Tsetlin
coordinates. As in the rational case, by Lemma 2.1, we have

N-1
Froa(t- Xo)dt = J] Wi,

m=1

/tET,XOEGTl(,u)

where W,,, denotes the coefficient of (z1 - - - 2, )* =1 in vy, - (21 - - - 2,,)¥ 1. Notice that (v, diag(e“mﬂ)va)m =
diag(e*™). By Lemma 4.3, we have

A(e“m76”m+l)k_1 m m+1
NN

Wm _ (_1)(k—1)(m+3)m/2
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Noting that GT.(dua) = lgt, - dz by Proposition 2.2 and inducting on N, we transform (5.5) to

N—-1
TN 5) :/ [T WaneSi o =Sai D T gl
71 e — P

:(—1)<k71>(N+2><N—1>/2/ A(e“vBA)HZ’ﬁ—l(eﬂ’ek)esmz,,xﬁzim
p<x Aler)FA(eN)E!

k—1

:( 1)(1~c 1)(N+2)(N— /2H H (Si_sj_a)esNzi)\i

a=11<i<j<N-1

Aer,eM 17y (et e
' (I>
/M</\ Aer)k=1A(er)k—1 Kk, s Hd/iu

where s’ = (51 — SN,.. ., SN—1 — sN> and the last equality follows from the ¢ = —sy case of (5.2). By

Lemma 5.1 and (5.2), we see that
py1—k e k=1 =37, pi ot / *(kfl)Zw'kil /
(A(e ) Ll‘[ V- (Hi,w)(k*”A(e ) e & ) Dy (p,s') =e o HH(SﬁSN*a)‘I)k(H,S),
a=1 1

so by expressing Zj_1(e*, ) using Proposition 5.4 and applying Proposition 5.3 and the shift identity, we
obtain the expression

k-1
. , A(e“ eA)k—lq)k(M S/)
v _ (L) (e-DN(N-1)/2 e a)etN S A (D) S, i —(N—l)/ ) )
k(A 8) = (=1) Il Il (si—sj—ae (k) on AN FTA(en )R dp

a=11<i<j<N )
1 . . Alet e/\)k_l _
i — 55— a)l(k -(N-1>/ N (S A ) » ) Sy (0, 8)d
ﬂl <i<j <N(S > a) ( ) M_<)\e A(e)‘)k_lA(eli)k—le k(/J,S) 10
k-1
= (si —s; —a)@r(A, s).
a=11<i<j<N

The theorem now follows by normalizing via Theorem 1.4.

6. PROOFS OF SOME TECHNICAL LEMMAS

6.1. Proof of Lemma 3.13. For a subset I of indices, denote by 1; and 2; the vectors with 1 and 2 in the
indices of I and 0 elsewhere. We first expand the Macdonald difference operators in log(g,,), yielding

D;V’q2>\m+2kp (qm, qm )fm( ms qm)

— . q@m Mgt G=0) _
_ 2r(r—n m4m m
q Z H m T m J+k(] ’L)) _ 1 fm<)\ + 117 qm)
|I|l=ri€l,j¢l
2(Am,i=Am,j+k(j—1)) —k
dm + 4 .
=> 1l ( an) 1 20 A +RG—0) ) Jmim 4115 )
|I|=riel,j¢l —dm

LR ARG 2 3
_ Z 14 Z (1 . qm) ; 2(,\,,,m—/\m,j+/€(j—i)r;1 + Cr(/\ma Qm) log(Qm) fm(/\m + 15 Qm) + O(log(Qm) )
[I|=r i€l,j¢l oA
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for some functions Cy.(A,, @m) = 0(log(gm)~1). Specializing this, we see that

D! q2Am+2ke (Q72n7 qu)fm()\m§ (Jm)

N
N . q’%g)‘m.i7)\m,j+k(j77;)) gk
= Z L+ Z(l - qm) 1 Q(Am,i—km.j"rk(j—i;; + Cl(/\rm Qm) IOg(Qm)2 f7n(/\m+1i§ QWL)+O(10g(QW)3)

and

Djl\l,qf,fm*%" (qu q?rfffm(/\m; Im)
N
= Z (1 + Sl()\m’ qm) log(qm)Q) fm()\m +2i; qm) + Z (1 + 52()‘7717 Qm) log(Qm)Q) fm()\m + 1i1,i2;qm) + O(log(qm)Q)
=1 il#iQ
N 2(Am,i—Am,j+k(j—1)) —k 2(Am,iF1=Am,j+k(G—1)) —k
k qm tdm | Om +dm )
+ (1= dm) Z Z ( 2(Am,i—Am,;j+k(G—1)) + 2(Am,it1—Am, ;+k(—1)) )fm()‘m +2i4m)
i1 jAi 1= qm 1 —gm
2(Amig=Amj+k(i=i2)) |k 2(Am.i —Amtk(i—i1)
k dm +q,, Qm
=g > > ( 200 i3 —Am g+ —i2))
i1 j#iie L dm 1-
q2(>‘m.i2 —Am,ip th(i1—i2)) q2(>\m,i1 —Am,ig —1+k(i2—1i1))

+(l=qh) Y (T o
& 2(A'm,'£2—krm,il+I€(i1—i2))
i#iz L dm 1—

0 ) f o+ L)
q2()\m,i1*Am,lerk(jl*il)) mAsm in,iz5 dm
m

0 O T
q2(/\'rn,il_/\'rn,iQ_l"l‘k(iZ_il)) )‘fm( m + Liyio Qm)
m

for some functions S1 (A, ¢m) and Sa(Am, ¢m), both of which are o(log(g,,)~1). We define

2(Amip —Am,i; Th(i1—i2)) 2(Am,iq —Am,ig —14+k(ia—i1)) _
Gm 2 1 1 1 2 + qu

_ 1 ( +a," | dm )
1= @\ 1 q%,\m,w—,\m,ll+k(z‘1—z‘2)) 1— q%,\m,il—,\m,,12_1+k(1-2_i1))

Q(Am,,i_km,j"l‘k(j_i))

Ailﬂ'z ()‘ma Qm)

_ AmiFl=Am i +k(G—i _
+qu q% i+l i tk(i—1)) +qu

Bi j(Am,qm) = | 2O A TRG0) + | 2O A s FRG=0)

so that

2()\m,i27)\m,i1+k)(i17i2)) q_k qQ()\m,il 7)\m,i271+k7(i27i1)) —k

Z ( 2(Mmig —Am,iq k(i1 —i2)) + 2(Am,iy —Am,ig—1+k(i2—i1)) )fm()‘m + 11‘1,2‘2,(]m)
indtis L —Gm 1—gm

= (1= q2) D AivisOms @) Fn A+ Liy i @) + O(log(gim)?)

11702
and
2(Am i —Am,j+k(j—i — 2(Am,it1=Am j+k(j—i —
Z qm( , Tk Z))Jrqmchrqm( , k(i z))Jrquf()\ g
2(Xm i = Am,j +k(j—1)) 20m it L Am tEG—) )/ m\Am T Zisdm
iz - 1= am 1 —qm

= Z Bi,j(>\ma Qm)fm()\m + 21'; qm)a
J#i

Notice that

. ke?rin=2Xia — 9(k — 2)er A2 + k .
fm}gnoo Ail’iQ (Am’qm) B (1 _ eAil—Aiz)Q and Tr}gnoo Bi,j()‘vam) - =

2(1 + M=)
1—eri=
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We have also that
DN 2/\m+2kp (qma qm )f’m( m» Qm)
= Z (1 + 02()\ma Qm) IOg(Qm)Q) fm(>\m + lil,ig; Qm) =+ O(IOg(Qm)Z)
i1#£02

()\m i Am,j+k(j—i1))+q k

2
liqm Z Z ( 2(>\m,1:1 Am,j+k(F—11)) )fm()\ +171,72an)

i17#142 jAI1,i2 1 —gm

2()\71:,,712 rn,.,j+k(j_i2)) +q7k
Zﬁélz J#i1,i2 —Qdm
Together, these imply that
Dy (qm)fm m7Qm Z 1 _qﬁm)ZBl}j(}‘vam) +Sl()‘m=Qm) IOg(qm)2 fm()‘m +2i;qm)
i=1 i
N 2(Am,i—Am,j+k(j—1)) —k
Qm + a4 .
-2 Z 1+ Z 1 — 2O +RG—0) S + 135 4m)
i=1 YE] —gm
+ (1 - qz)(l - Q?n) Z Ail,ig (Ama Qm)fm()\m + 1i1,iQQQm)
i1 02

+ (Co(Mms @m) — S2(Ams @m)) 108(@m) % frn(Am + Ly ia3 @m) + N e (A @) + O(log(gim)?)-

Taking limits in the previous expression yields that

14+ e’\ =
Tim (=210(6m)) 2D, (0) frnConi 6) = AFO) = kD7 T 0F(O) + RSO
i#]

6)\ —Aj
- (a- kzij@ (0= 0) + ROV ) F()

for some function R(\). Note that f,,(\,) = 1 is the Macdonald polynomial in ¢?*™ corresponding to the
empty partition, hence we conclude that

Dx(q) -1 =p2(q**) = 2p1 (¢™) + N = Y (¢ = 1)?,
which implies that
lim (~210g(¢m)) "> Da,, (4m) - 1 = ¥*(p, p),

m—r

hence R(\) = k%(p, p). We conclude that

1+€>\ —Aj —trig
i (~2108(gm)) D (o) fn o ) = (A = 6 30 155501 = 83) + 12(0,)) V) = T2 F ).

m— oo
i<j

6.2. Proof of Lemma 4.3. We verify the statement by direct computation. Write u = u(u, ) and A =
diag(A1,...,An). Define the non-negative real numbers z1,...,xx_1 by

2 HJ(AJ - /Jq)
i =—="
H#i(ﬂj — Hi)
where we note that the right side of the definition is non-negative because A and p interlace. Define y =
>N — > ki For i < N, our definition of u implies that
Ti

Aj = i

(6.1) Uij = UNj-
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We first claim that u\ = p’u for the matrix

251 1
H2 Z2
p =
HUN-2 TN-2
UN—-1 | TN-1
ry T2 -+ IN-2 IN-1 Y

For i < N, this holds for each element of row ¢ by the equality
Ajllij = fijuij + TiUN;
implied by (6.1). For row N, we must check that

N-1

N— 22
/\juszzxi“ijeruNj:( Z ._Z .)“Nﬂ"

i=1

for which it suffices to check that

(6.2) Z Loy ) =D Ai- Zuz

Hl;éz M= i#j

The left side of (6.2) is a symmetric rational function in the u; which may be expressed as a quotient

P(p)
[Lic;(pi = 1)

whose numerator P(u) has degree at most N(V-1) 5 =D 4 1 in the p-variables. Therefore, P(y) is antisymmetric,
meaning the quotient is symmetric of degree at most 1. In particular, it takes the form C; + C2 ), p; for
C7 and C constant in g. Noting that the coefficient of MN 1uév 3uév 4. pN_2 in P(p) is —1 shows that

Cy = —1. Finally, (1 is a polynomial of degree 1 in A, so it is given by

. Hiv 2( )N 2217&] . ‘
@ = Z Hz;él(/il Z Hl;éz Z M= Z A

i I#j i#£]
N—-2
where the last equality follows by noting that ), m is symmetric of degree 0 in p and a ratio-
nal function whose denominator is [,_.(u; — #;) and whose numerator contains pN 2l 7 py o with

coefficient 1. This establishes (6.2).
It remains to check that u is unitary. For this, we check that the columns of u are orthonormal. Choose
any 1 <a <b< N. We have that

22 b Mz)
iaWib — : 1 a =11- J?éa a .
2ttt (Z Ca —m) O — 1) )“N o ( 2 ) ) e

Hg;ﬁz Hj — /’Ll)

Observe that ), % is symmetric in the p; and may be expressed as a rational function with
JFINTT

denominator [T, j(uz ;) and numerator of degree at most w in p. Further, the coefficient of
u¥72u573 -y —2 in the numerator is 1, so we conclude that

1L;
(6.3) 1— Z M =0,

H];ﬁz lu,] M’L)

hence ), u;quip = 0. It remains only to show that

2
122%211: (1—1—;0\&961;“)2) Uiy
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for which we must check that
Hz;ﬁa()‘l = Aa) —1_ Z Hj;éa(/\j = 143)
Hl(lu’l - )\a) ()\a - :u’l) H];ﬁz(lu M’L)

which is equivalent to
120N — 1)
(6.4) A =Aa) =] (= 2a) | 1= :
ll;z[z 1:[ ; ()‘a - Ui) H];éz(lu’ /—%)
View both sides of (6.4) as polynomials in A,. If A\, = A for b # a, the right side becomes
Hj;ea,b()‘j — i)
Hj;éi(:uj — Hi)

by (6.3). Therefore, both sides of (6.4) are polynomials in A, of the same degree with the same roots and
the same leading coefficient (—1)V =1, so they are equal, completing the proof.

1- —0

i

Remark. The expressions above for 27 and y appeared previously in [Ner03]. Similar computations appeared
also in [GK02, FR05].

6.3. Proof of Proposition 4.4. Before beginning the proof, we outline our approach. We first obtain an
alternate expression for Zj(u, A) in Lemma 6.1. We then observe that Zj(u, A) is a constant multiple of
Z1 (@', X') for sets of variables p/ and N which contain k duplicate copies of each value of p and A. Relating
Calogero-Moser Hamiltonians at different values of k in Lemma 6.2 leads to the result. Recall here that
D,,, (k) denote the rational Dunkl operators of (4.1).

Lemma 6.1. For any xk € C, we have
A, N) "Dy (8) -+ Dyuy (8) A A = 687123 (1, ).
Proof. We first claim that

(6.5) AN D)+ D AN =kt S [T~ o)
o:{l,...,a =1
{—){1,..}.,[}
o (i)#o ()

Taking @ = N — 1 in (6.5) and expanding the product in the definition of Z7(u, A) then completes the
proof. We prove (6.5) by induction on a. The base case a = 1 holds because D, (k) acts by 0; on the
symmetric function A(g, A)* in p. For the induction step, note that D, (k) --- D, (k) A(u, A)* is symmetric

in fig41,... un—1 by the inductive hypothesis. Applying D,, ., we see that
A(:U’v /\) Dua+1 ("Q)(Dﬂa (K) e DMl (H)A(M? /\)K)
a a a
— ot Z parr = A T = o)™ = w2t > [ )71 (a1 = Agi) ™!
o’:{l,...,a}izl o:{1,...,a}i=1 i=1
—{1,...,l} —{1,...,l}
a(i)#a(j) o(i)#o(4)
a+1
=ty [T =)™
o:{1,...,a+1} =1
—{1,....1}
a(i)#a(j)
where we repeatedly make use of the identity
ol
(e — M) — i—x):1. O
- (Hat1 = Aj) = (i — A7)

Proof of Proposition 4.4. Replace [ by kl and apply Lemma 6.1 with x = %7 k copies of each \;, and k(N —1)
different variables pi,...,u%, ..., uk_q, ..., pk_,. We obtain

(6.6) Al AND T Dk (k) Dy (/R A{u]} AND) = kR Z (]} (AT
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Now, make the specialization pul = --- = ¥ = uy,. .. N == M§v71 = un—_1. We first claim that

Zi({ud} AN = RN Z({ads ()

under this specialization. Indeed, we see that

Zi({pd}, (M) = 3 [T = Az~
o:{l,...,(N=1)}x{1,....k} ©,J
{1, 0 x{1,...,k}
o (i1,41)#0(i2,52)

SRED S G | ) | R

ol oV T {1, x {1, k) i (jp)edt
lo*|=k
o'No? =0

k i
SLCARTEEED SRR 1 01 ( (PR (PR

1 1 N-—-1 N—-1 g4 y
0150307 544,07 yees O J

X, o5=k
Zi ‘7; <k

which is a direct expansion of Zp({u;},{\:}). The conclusion will now follow from Lemma 6.2, which
describes what occurs under specialization to the other side of Lemma 6.1. Indeed, applying Lemma 6.2 for
p(y) =yi---yk_| to (6.6), we see that

Ze({pi}, ANi}) = BT DR DRV DRA (i} AN 1) ™ Dy (B)* -+~ Dy (R)* A({ i}, {0 1)
= k" TYA s} AN T Dy (B)F - Dy (R)* A({ps}, AN D" -

Lemma 6.2. Let p € C[yi,...,y%_,]%* - be a symmetric polynomial. Then the map Resy, : (C[,ug] — Clui]
given by ] + p; satisfies
_ _ 1 1 1 1

Resy, op(Dp} (k 1)7 R Du’ﬁ,fl(k 1)) = p(EDlh (k)7 T EDIM (k)’ T EDNN—I(k)7 ) EDHN—I(k)) o Res.
Proof. Let Hy, (n—1)x and Hj, (y—_1) denote the rational Cherednik algebras of S(y_1y; and Sy_1, respec-
tively. Within Hy /i, (v—1)x and Hj, (v_1), denote the power sums p,(z) = Z”(:cg)“ and pj,(x) = >, ¢, and
define pq(y),p,(y) similarly.  Write Oy (v—1)k = Hijpv-1r — End((C[;d]) and ©x N1 @ Hpnvo1 —
End(C[u,]) for the Dunkl embeddings induced by ©1/ (v_1)(z]) = 1], O1/p,v-1)k(¥]) = D#]‘-(l/lc)7

O N-1(x;) = kz;, and O n_1(y;) = %Du(k) In this language, we wish to show that
(6.7) Resy 0 O1 /5, (v—1)k(Pa(y)) = Ok, N-1(P,(y)) o Resy.
Suppose first that the statement held for ps(y). Then, we have for any a that

(6.8) Resy, 0 ©1/k (v—1)k(adp, () Pa(@)) = O (v—1)(adpy ()P4 (2)) © Res
Recall that for h = % Z” (@i,;Yi,; + i jxi;) and b/ = % > i (@iyi + yiz;), the triples

(fres) = (3pal0). —5pa(@), k) and (70 = (5ph(0), — 5ph(a), )

are copies of sly inside Hy i (v_1)x and Hy y_1 corresponding to the SLy(C)-actions given by

a b x; = ax; + by; a b i = cxi + dy;
c d 1T 7 y'L? c d yli 7 y17

and similar formulas for xg, yf . In particular, p,(x) and p[,(z) are highest weight vectors of weight a for

these representations, so ady, ) 2Pa(z) and ady, ) /op; () are the same fixed constant multiple of

(_01 é) Pa(7) = pa(y) and (_01 (1)) Pa(®) = Pa(v),

respectively. Combining with (6.8) and canceling common constant factors yields the desired relation (6.7).
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It remains to check the statement for ps(y) directly. Observe that

Res o Z 8“_3 = 0,, o Resy,
J
which implies that
0, —0 192 o -0
(6.9) Resy, | Y “7f = k2 M2 Regy ().
J1,J2 Mh 'ulz Hiy = iy
For a partition 7 with at most k parts, let m, (,uf ) be the monomial symmetric function in p}, ..., u¥. Then
we see that
0 i1 — 0 J2 .
Resy, (232 - = %)mr(ﬂﬁ)
i _ 2
J1<j2 ul i

(6.10)

Combining (6.9)

1 T|—2
> g(le(le —1=7) +7,(5, — 1 - Tj1)> k)

2
= ;Tj(ﬂ' -1)- %

Jj1<J2

1 - .

= (E 04 2 Y | ) Ressn ()
i J1<J2

= LIl = 1)) Resy(me (1))

1 .
= - 0p, Resi(m-(11}))-
and (6.10), the statement for ps(y) follows by computing
J— 9 aﬂ“ - 8;1,]..2
Resi oLy (1/k) =Resio | 3 00— ), ——
¥ (i1,51)<(%2,72) iy Hiy
2 2 aujl B =04
= Res;, o Z 3#3_]@ = Z Z Lo
i J Jj1<j2 i MZ 117&@2 71,72 MGy — M,
0% — 2k M” _ o Resy,
Z ' Z Hiy — :ulz
i1#£1
1—
= 1T, (k) o Resy. _

Remark. Lemma 6.2 may be extracted from [CEE09, Proposition 9.5(ii)] on representations of the rational
Cherednik algebras Hy;(S(n—1)x) and Hp(Sny—1). We give a proof to keep the exposition self-contained.
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