
A NEW INTEGRAL FORMULA FOR HECKMAN-OPDAM HYPERGEOMETRIC

FUNCTIONS

YI SUN

Abstract. We provide Harish-Chandra type formulas for the multivariate Bessel functions and Heckman-

Opdam hypergeometric functions as representation-valued integrals over dressing orbits. Our expression is

the quasi-classical limit of the realization of Macdonald polynomials as traces of intertwiners of quantum
groups given by Etingof-Kirillov Jr. in [EK94]. Integration over the Liouville tori of the Gelfand-Tsetlin

integrable system and adjunction for higher Calogero-Moser Hamiltonians recovers and gives a new proof
of the integral realization over Gelfand-Tsetlin polytopes which appeared in the recent work [BG13] of

Borodin-Gorin on the β-Jacobi corners ensemble.
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1. Introduction

The Heckman-Opdam hypergeometric functions are a family of real-analytic symmetric functions intro-
duced by Heckman-Opdam in [HO87, Hec87, Opd88a, Opd88b] as joint eigenfunctions of the trigonometric
Calogero-Moser integrable system. The latter is a quasi-classical limit of the Macdonald-Ruijsenaars inte-
grable system, and in [BG13], Borodin-Gorin realized the Heckman-Opdam hypergeometric function as a
limit of the Macdonald polynomials under the quasi-classical scaling. By applying their limit transition to
Macdonald’s branching rule, they obtained a new formula for the Heckman-Opdam hypergeometric functions
as an integral over Gelfand-Tsetlin polytopes.

The purpose of the present work is to provide new Harish-Chandra type integral formulas for the Heckman-
Opdam hypergeometric functions as representation-valued integrals over dressing orbits of UN . Our formu-
las are the quasi-classical limits of the expression given by Etingof-Kirillov Jr. in [EK94] for Macdonald
polynomials as representation-valued traces of Uq(glN )-intertwiners. In this limit, traces over irreducible
representations become integrals with respect to Liouville measure on the corresponding dressing orbit.

Integrating our formulas over Liouville tori of the Gelfand-Tsetlin integrable system yields an expression
for Heckman-Opdam hypergeometric functions as an integral of UN -matrix elements over the Gelfand-Tsetlin
polytope. We identify these matrix elements as an application of higher Calogero-Moser Hamiltonians to
an explicit kernel. Taking adjoints of these Hamiltonians recovers and gives a new proof of the formula of
[BG13]. Our techniques involve a relation between spherical parts of rational Cherednik algebras of different
rank which is of independent interest.

In the remainder of the introduction, we summarize our motivations, give precise statements of our results,
and explain how they relate to other recent work.

1.1. Heckman-Opdam hypergeometric functions. Fix a complex number k and a positive integer
N . The rational and trigonometric Calogero-Moser integrable systems in the variables {λi}1≤i≤N are the
quantum integrable systems with quadratic Hamiltonians

Lp2
(k) =

∑
i

∂2
i − 2k(k + 1)

∑
i<j

1

(λi − λj)2
and

Ltrig
p2

(k) =
∑
i

∂2
i − k(k + 1)

∑
i<j

1

2 sinh2
(
λi−λj

2

) .
They are completely integrable systems, meaning that Lp2(k) and Ltrig

p2
(k) fit into families Lp(k) and Ltrig

p (k)
of commuting Hamiltonians defined for each symmetric polynomial p. Define conjugated versions of these
Hamiltonians by

Lp(k) = ∆(λ)k ◦ Lp(k) ◦∆(λ)−k(1.1)

L
trig

p (k) = e−
(N−1)k

2

∑
i λi∆(eλ)k ◦ Ltrig

p (k) ◦ e
(N−1)k

2

∑
i λi∆(eλ)−k,(1.2)

where for a set of variables x, we denote by ∆(x) the Vandermonde determinant ∆(x) =
∏
i<j(xi − xj).

For each s = (s1, . . . , sN ), the hypergeometric system corresponding to s was introduced in [HO87, Hec87,
Opd88a, Opd88b] as

(1.3) L
trig

p (k − 1)Fk(λ, s) = p(s)Fk(λ, s).

The following characterization was given of certain joint eigenfunctions of this system known as Heckman-
Opdam hypergeometric functions.
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Theorem 1.1 ([HS94, Opd95]). For each s, the hypergeometric system (1.3) has a unique symmetric real-

analytic solution Fk(λ, s) for L
trig

p (k − 1), normalized so that Fk(0, s) = Fk(λ, 0) = 1. In addition, Fk(λ, s)
extends to a holomorphic function of λ on a symmetric tubular neighborhood of Rn ⊂ Cn.

The corresponding rational degenerations are a family of symmetric real-analytic joint eigenfunctions
Bk(λ, s) of Lp(k − 1) satisfying

(1.4) Lp(k − 1)Bk(λ, s) = p(s)Bk(λ, s)

and normalized so that Bk(0, s) = Bk(λ, 0) = 1. They are known as multivariate Bessel functions and have
been studied in [Dun92, dJ93, Opd93, OO97, GK02, FR05].

1.2. Poisson-Lie group structure on uN and UN . The Lie algebra glN = glN (C) has real Iwasawa
decomposition glN = uN ⊕ bN with bN ' u∗N . Let tN ⊂ uN be the Cartan subalgebra. We identify u∗N with
pN , the trivial Lie algebra of N × N Hermitian matrices by the map x 7→ 1

2 (x + x∗). Equip pN with the
Kirillov-Kostant-Souriau Poisson structure, and denote the coadjoint orbit of a diagonal matrix λ ∈ pN by
Oλ. We will use λ interchangeably for the diagonal matrix and its sequence of diagonal entries. Denote the
symplectic form and Liouville measure on Oλ by ωλ and dµλ, respectively, and let C[bN ] be the corresponding
Poisson algebra.

In the corresponding Iwasawa decomposition GLN = UNBN for the group, give UN the Lu-Weinstein
Poisson-Lie structure (see [LW90]) so that BN is the dual Poisson-Lie group to UN . Let TN ⊂ UN denote
the diagonal torus. Identify BN with the Poisson manifold P+

N of N×N positive definite Hermitian matrices

via sym(b) = (b∗b)1/2 so that sym intertwines the dressing and conjugation actions of UN on BN and P+
N .

For Λ = eλ ∈ P+
N , denote by OΛ, ωΛ, and dµΛ the dressing orbit containing Λ, its symplectic form, and its

Liouville measure. Let C[BN ] and C[OΛ] denote the corresponding Poisson algebras; these algebras possess
a ?-structure given by complex conjugation on each matrix element.

1.3. The main results. Restrict now to the case of positive integer k. LetWk−1 denote the UN -representation

L((k−1)(N−1),−(k−1),...,−(k−1)) = Sym(k−1)NCN ⊗ (det)−(k−1),

and choose an isomorphism Wk−1[0] ' C ·wk−1 for some wk−1 ∈Wk−1[0] which spans the 1-dimensional zero
weight space Wk−1[0]. Let fk−1 : Oλ → Wk−1 and Fk−1 : OΛ → Wk−1 denote the unique UN -equivariant
maps such that fk−1(λ) = Fk−1(Λ) = wk−1. Our main results are Theorems 4.1 and 5.2, which realize
the multivariate Bessel functions and Heckman-Opdam hypergeometric functions as representation-valued
integrals over coadjoint and dressing orbits under the identification of Wk−1[0] ' C · wk−1 with C.

Theorem 4.1. The multivariate Bessel function Bk(λ, s) admits the integral representation

Bk(λ, s) =
Γ(Nk) · · ·Γ(k)

Γ(k)N
∏
i<j(λi − λj)k

∏
i<j(si − sj)k−1

∫
X∈Oλ

fk−1(X)e
∑N
l=1 slXlldµλ.

Theorem 5.2. The Heckman-Opdam hypergeometric function Fk(λ, s) admits the integral representation

Fk(λ, s) =
Γ(Nk) · · ·Γ(k)

Γ(k)N
∏
i<j(e

λi−λj
2 − e−

λi−λj
2 )k

∏k−1
a=1

∏
i<j(si − sj − a)

∫
X∈OΛ

Fk−1(X)

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ,

where Xl is the principal l × l submatrix of X.

Remark. The k = 1 case of the integral of Theorem 4.1 is the HCIZ integral of [HC57a, HC57b, IZ80]. It
also generalizes the construction of [GK02], where a similar construction is made for k = 1, 2.

1.4. Existing integral formulas and connection to β-Jacobi corners ensemble. Scalings of Heckman-
Opdam functions appeared in the work [BG13] of Borodin-Gorin on the β-Jacobi corners ensemble, where
they were obtained as a certain scaling limit of the Macdonald polynomials Pµ(x; q, t). For λ1 ≥ · · · ≥ λN ∈
RN , define the Gelfand-Tsetlin polytope to be

GTλ := {(µli)1≤i≤l,1≤l<N | µl+1
i ≥ µli ≥ µl+1

i+1},
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where we take µNi = λi. A point {µli} in GTλ is called a Gelfand-Tsetlin pattern. To state the result of
[BG13], we define the integral formulas
(1.5)

φk(λ, s) = Γ(k)−
N(N−1)

2

∫
µ∈GTλ

e
∑N
l=1 sl(

∑
i µ

l
i−

∑
i µ

l−1
i )

N−1∏
l=1

∏l
i=1

∏l+1
j=1 |µli − µ

l+1
j |k−1∏

i<j |µli − µlj |k−1
∏
i<j |µ

l+1
i − µl+1

j |k−1

∏
i=1

dµli

and

Φk(λ, s) = Γ(k)−
N(N−1)

2

∫
µ∈GTλ

e(
∑N
l=1 sl(

∑l
i=1 µ

l
i−

∑l−1
i=1 µ

l−1
i ))(1.6)

N−1∏
l=1

∏l
i=1

∏l+1
j=1 |eµ

l
i − eµ

l+1
j |k−1∏

i<j |eµ
l
i − eµlj |k−1

∏
i<j |eµ

l+1
i − eµ

l+1
j |k−1

N−1∏
l=1

e−(k−1)
∑l
i=1 µ

l
i

∏
i

dµli,

where (1.5) is a rational degeneration of (1.6). In [GK02], the formula (1.5) was related to the multivariate
Bessel functions as follows; a related approach was given for k = 1/2, 1, 2 in [FR05, Appendix C].

Theorem 1.2 ([GK02, Section V]). For positive real k > 0 and λ1 > · · · > λN , the multivariate Bessel
function is given by

Bk(λ, s) =
Γ(Nk) · · ·Γ(k)

Γ(k)N
φk(λ, s)∏

i<j(λi − λj)k
.

Remark. We have adjusted the normalization of Bk(λ, s) in Theorem 1.2 from [GK02] so that Bk(λ, 0) = 1.

In the trigonometric setting, the integral formula of (1.6) was realized by Borodin-Gorin as a scaling limit
of Macdonald polynomials. Applying this scaling to the eigenfunction relation for Macdonald polynomials,
they showed that Φk(λ, s) was an eigenfunction of the quadratic Calogero-Moser Hamiltonian Ltrig

p2
(k − 1).

Together with some arguments which we detail in Subsection 5.1 for k a positive integer, this relates Φk(λ, s)
to Fk(λ, s).

Theorem 1.3 ([BG13, Proposition 6.2]). For any positive real k > 0, Φk(λ, s) is the following scaling limit
of Macdonald polynomials

Φk(λ, s) = lim
ε→0

εkN(N−1)/2Pbε−1λc(e
εs; e−ε, e−kε).

Theorem 1.4 ([BG13, Definition 6.1 and Proposition 6.3]). For any positive real k > 0 and λ1 > · · · > λN ,
the Heckman-Opdam hypergeometric function is given by

Fk(λ, s) =
Γ(Nk) · · ·Γ(k)

Γ(k)N
Φk(λ, s)∏

i<j(e
λi−λj

2 − e−
λi−λj

2 )k
.

Remark. The integral formulas of Theorems 1.2 and 1.4 are stated only for λ1 > · · · > λN . We may extend
them to {λi 6= λj} by imposing that Fk(λ, s) and Bk(λ, s) are symmetric in λ. Under this extension, by
taking limits of relevant normalizations of (1.5) and (1.6) we may show that the expressions of Theorems
1.2 and 1.4 extend to λ ∈ RN . We give such arguments for the trigonometric case when k > 0 is a positive
integer in Subsection 5.1.

Remark. The main result of [KK96, Theorem 6.3] gives for each Weyl chamber a contour integral formula
for a solution to the hypergeometric system (1.3) holomorphic in that Weyl chamber. These formulas have
the same integrand as the integral of Theorem 1.4 but contours which are different for each Weyl chamber.

1.5. Realization via quasi-classical limit of quantum group intertwiners. The formula of Theorem
5.2 is the quasi-classical limit of the trace of an intertwiner of quantum group representations. We will
give a second approach to its proof using this theory; when combined with our first proof of Theorem 5.2,
this provides a new proof of Theorem 1.4 from [BG13]. Our approach proceeds via the degeneration of
Uq(glN )-representations; we summarize the main idea in this subsection and give full details in Section 3.

For a dominant integral weight λ, let Lλ denote the corresponding highest weight irreducible representation
of Uq(glN ). Let ρ = 1

2

∑
α>0 α be half the sum of the positive roots. In [EK94], it was shown that there
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exists a unique intertwiner ΦNλ : Lλ+(k−1)ρ → Lλ+(k−1)ρ ⊗Wk−1 of Uq(glN )-representations such that the
highest weight vector vλ+(k−1)ρ ∈ Lλ+(k−1)ρ is mapped to

ΦNλ (vλ+(k−1)ρ) = vλ+(k−1)ρ ⊗ wk−1 + (lower order terms),

where the lower order terms have weight less than λ+(k−1)ρ in the Lλ+(k−1)ρ tensor factor. They expressed
Macdonald polynomials in terms of these intertwiners in the following theorem.

Theorem 1.5 ([EK94, Theorem 1]). The Macdonald polynomial Pλ(x; q2, q2k) is given by

(1.7) Pλ(x; q2, q2k) =
Tr(ΦNλ x

h)

Tr(ΦN0 x
h)
.

We characterize both sides of (1.7) under the quasi-classical limit transition of [BG13] in the following
two results. Corollary 3.10 converts traces of quantum group representations to integrals over dressing orbits
to yield an integral expression for the limit. Theorem 3.14 uses the fact that the Macdonald difference
operators diagonalize both sides of (1.7) to show that this limiting integral is diagonalized by the quadratic
trigonometric Calogero-Moser Hamiltonian.

Corollary 3.10. For sequences of dominant integral signatures {λm} and real quantization parameters {qm}
so that limm→∞ qm → 1 and limm→∞−2 log(qm)λm = λ is dominant regular, we have

lim
m→∞

(−2 log(qm))kN(N−1)/2Pλm(q−2s
m ; q2

m, q
2k
m ) =

∫
OΛ

Fk−1(X)
∏N
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ∏k−1

a=1

∏
i<j(si − sj − a)

.

Theorem 3.14. The trigonometric Calogero-Moser Hamiltonian L
trig

p2
(k) is diagonalized on

1∏
i<j(e

λi−λj
2 − e−

λi−λj
2 )k

∏k−1
a=1

∏
i<j(si − sj − a)

∫
OΛ

Fk−1(X)

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ

with eigenvalue
∑
i s

2
i .

Remark. Combining these two results and our first proof of Theorem 5.2 yields a new proof of Theorem
1.4 which is independent of the results of [BG13].

Remark. In the recent paper [Sun14], we give a representation theoretic proof of Macdonald’s branching
rule using a quantum analogue of the results of the present work. In particular, we identify diagonal
matrix elements of ΦNλ in the Gelfand-Tsetlin basis with the application of higher Macdonald-Ruijsenaars
Hamiltonians to a kernel. We then apply adjunction to the Etingof-Kirillov Jr. trace formula to recover the
branching rule. The link established in this paper between the expressions given in Theorem 5.2 and [BG13]
for the Heckman-Opdam hypergeometric functions is the quasiclassical limit of this argument and inspired
the approach of [Sun14].

1.6. Outline of method and organization. We outline our approach. We first show that the quasi-
classical limit of the Etingof-Kirillov Jr. construction of Macdonald polynomials as traces of Uq(glN )-
intertwiners corresponds to integrals over dressing orbits of BN in Corollary 3.10 and that these integrals
diagonalize the quadratic Calogero-Moser Hamiltonian in Theorem 3.14. The Gelfand-Tsetlin action on these
dressing orbits then defines a classical integrable system whose moment map is the logarithmic Gelfand-
Tsetlin map GT of [FR96, AM07]. Integration over the Liouville tori reduces the integral of Theorem 5.2
to an integral with respect to the Duistermaat-Heckman measure GT∗(dµΛ) on GTλ, which is the Lebesgue
measure. This yields an integral expression for Φk(λ, s) over GTλ. The new integrand differs from that
of Theorem 1.4, but we show equality of the integrals by applying adjunction for higher Calogero-Moser
Hamiltonians.

The remainder of this paper is organized as follows. In Section 2, we give the geometric setup for our
integral formulas. In Section 3, we prove Corollary 3.10 and Theorem 3.14 by taking the quasi-classical limit
of the quantum group setting. In Section 4, we prove Theorem 4.1 in the rational setting, establishing in
particular the key Proposition 4.4. In Section 5, we use Proposition 4.4 to give another proof of Theorem
5.2 in the trigonometric setting via the formula of [BG13]. In Section 6, we provide proofs for some technical
lemmas whose proofs were deferred.
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2. Geometric setup

2.1. Notations. For sets of variables {xi} and {yi}, we denote the Vandermonde determinant by ∆(x) =∏
i<j(xi − xj), and the product of differences by ∆(x, y) =

∏
i,j(xi − yj).

2.2. Gelfand-Tsetlin coordinates. Define the Gelfand-Tsetlin map gt : Oλ → GTλ by

gt(X) = {λi(Xl)}1≤i≤l,1≤l<N ,

where Xl is the principal l × l submatrix of X, and λ1(Xl) ≥ . . . ≥ λl(Xl) are its eigenvalues. Define the
logarithmic Gelfand-Tsetlin map GT : OΛ → GTλ by

GT(X) = {log(λi(Xl))}1≤i≤l,1≤l<N .

By a theorem of Ginzburg and Weinstein (see [GW92]), the Poisson structures we have described on bN and
BN make them isomorphic as Poisson manifolds. By [AM07], there exists a Ginzburg-Weinstein isomorphism
bN → BN which intertwines the logarithmic and ordinary Gelfand-Tsetlin maps. In particular, this map
restricts to a symplectomorphism Oλ → OΛ.

2.3. Gelfand-Tsetlin integrable system. Let T := T1 × · · · × TN−1 be a torus of dimension N(N−1)
2 ,

where dimTl = l. For tl ∈ Tl and X in Oλ or OΛ whose principal l × l submatrix Xl is diagonalized by
Xl = UlΛlU

∗
l , the Gelfand-Tsetlin action of tl on X is defined as

tl ·X = AdUltlU∗l
(X),

where for Yl ∈ U(l), the matrix Yl ∈ UN is defined to be the square block matrix

Yl =


0

Yl
...
0

0 · · · 0 cIN−l

 ,

where c is chosen so that Yl ∈ UN . The actions of Tl preserve l × l principal submatrices and pairwise
commute, giving actions of T on Oλ and OΛ. These actions are Hamiltonian with moment maps gt and GT,
respectively, and the corresponding classical integrable system is known as the Gelfand-Tsetlin integrable
system (see [AM07, GS83, FR96] for more about this integrable system).

We may use the Gelfand-Tsetlin action to write any X0 in gt−1(µ) or GT−1(µ) in a special form. Write
X0 as either uNλu

∗
N or uNΛu∗N for some unitary matrix uN and decompose uN as

uN = u1(u∗1u2) · · · (u∗N−1uN )

for um ∈ U(m) and vm := u∗m−1um satisfying either

(vmµ
mv∗m)m−1 = µm−1 or (vme

µmv∗m)m−1 = eµ
m−1

,

where (M)m−1 denotes the principal (m − 1) × (m − 1) submatrix of a matrix M . Lemma 2.1 gives a
compatibility property between this decomposition and the Gelfand-Tsetlin action.

Lemma 2.1. For any l ≤ m and tm ∈ Tm, we have

tm · advl···vN (λ) = advl···vm(tm · advm+1···vN (λ)), and

tm · advl···vN (Λ) = advl···vm(tm · advm+1···vN (Λ)).

Proof. By construction, the principal m×m submatrix of advm+1···vN (λ) is diagonal, implying that

tm · advl···vN (λ) = adadvl···vm (tm)(advl···vN (λ)) = advl···vm(tm · advm+1···vN (λ)).

An analogous proof yields the lemma for Λ in place of λ. �
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2.4. Duistermaat-Heckman measures. The pushforwards gt∗(dµλ) and GT∗(dµΛ) of the Liouville mea-
sures on Oλ and OΛ to GTλ are called Duistermaat-Heckman measures. Because the Ginzburg-Weinstein
isomorphism intertwines the two Gelfand-Tsetlin maps, the two Duistermaat-Heckman measures on GTλ
coincide. It is known (see [GN50, Bar01, AB04, Section 5.6]) that the Duistermaat-Heckman measure for the
coadjoint orbit Oλ is proportional to the Lebesgue measure on the Gelfand-Tsetlin polytope. To compute
the normalization constant, we recall Harish-Chandra’s formula (see [Kir99, Theorem 3, Section 3])

(2.1)

∫
Oλ

e(b,x)dµλ =

∑
w∈W (−1)we(wλ,x)∏

i<j(xi − xj)
,

which upon taking x→ 0 (via x = ε · ρ and ε→ 0) shows that

Vol(Oλ) =

∏
i<j(λi − λj)

(N − 1)! · · · 1!
.

On the other hand, it is known (see [Ols13, Corollary 3.2]) that Vol(GTλ) =
∏
i<j(λi−λj)

(N−1)!···1! , meaning that

gt∗(dµλ) = 1GTλ · dx. This discussion establishes the following Proposition 2.2.

Proposition 2.2. The Duistermaat-Heckman measures gt∗(dµλ) = GT∗(dµΛ) are equal to the Lebesgue
measure dx on the Gelfand-Tsetlin polytope. Explicitly, we have

gt∗(dµλ) = GT∗(dµΛ) = 1GTλdx.

3. Quasi-classical limits of quantum group intertwiners

3.1. Finite-type quantum group. Let Uq(glN ) be the associative algebra over C(q±1/2) with generators

ei, fi for i = 1, . . . , N − 1 and q±
hi
2 for i = 1, . . . , N and relations

q
hi
2 eiq

−hi2 = q
1
2 ei, q

hi
2 ei−1q

−hi2 = q−
1
2 ei−1, q

hi
2 fiq

−hi2 = q−
1
2 fi, q

hi
2 fi−1q

−hi2 = q
1
2 fi−1

[q
hi
2 , ej ] = [q

hi
2 , fj ] = 0 for j 6= i, i− 1, [ei, fj ] = δij

qhi−hi+1 − qhi+1−hi

q − q−1
, [ei, ej ] = [fi, fj ] = 0 for |i− j| > 1

q
hi
2 · q−

hi
2 = 1, e2

i ej − (q + q−1)eiejei + eje
2
i = 0, f2

i fj − (q + q−1)fifjfi + fjf
2
i = 0 for |i− j| = 1.

We take the coproduct on Uq(glN ) defined by

∆(ei) = ei ⊗ q
hi+1−hi

2 + q
hi−hi+1

2 ⊗ ei

∆(fi) = fi ⊗ q
hi+1−hi

2 + q
hi−hi+1

2 ⊗ fi

∆(q
hi
2 ) = q

hi
2 ⊗ q

hi
2

and the antipode given by

S(ei) = −eiq−1, S(fi) = −fiq, S(qhi) = q−hi .

Taking the ?-structure on Uq(glN ) given by

e?i = fi and f?i = ei and (qhi/2)? = qhi/2

yields the ?-Hopf algebra Uq(uN ). Its restriction to the algebra span of qhi/2 is the ?-Hopf algebra Uq(tN ).

3.2. Macdonald polynomials and Etingof-Kirillov Jr. construction. Let ρ =
(
N−1

2 , . . . , 1−N
2

)
and

let er denote the elementary symmetric polynomial. For a partition λ, the Macdonald polynomial Pλ(x; q2, t2)
is the joint polynomial eigenfunction with leading term xλ and eigenvalue er(q

2λt2ρ) of the operators

Dr
N,x(q2, t2) = tr(r−N)

∑
|I|=r

∏
i∈I,j /∈I

t2xi − xj
xi − xj

Tq2,I ,

where Tq2,I =
∏
i∈I Tq2,i and Tq2,if(x1, . . . , xn) = f(x1, . . . , q

2xi, . . . , xN ) so that we have

Dr
N,x(q2, t2)Pλ(x; q2, t2) = er(q

2λt2ρ)Pλ(x; q2, t2).
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Note that our normalization of Dr
N,x(q2, t2) differs from that of [Mac95]. In [EK94], Etingof and Kirillov Jr.

gave an interpretation of Macdonald polynomials in terms of representation-valued traces of Uq(glN ). For a
signature λ, there exists a unique intertwiner

ΦNλ : Lλ+(k−1)ρ → Lλ+(k−1)ρ ⊗Wk−1

normalized to send the highest weight vector vλ+(k−1)ρ in Lλ+(k−1)ρ to

vλ+(k−1)ρ ⊗ wk−1 + (lower order terms),

where (lower order terms) denotes terms of weight lower than λ+ (k− 1)ρ in the first tensor coordinate. As
shown in [EK94, Theorem 1] (reproduced as Theorem 1.5), traces of these intertwiners lie in Wk−1[0] = C ·
wk−1 and yield Macdonald polynomials when interpreted as scalar functions via the identification wk−1 7→ 1.
The denominator also admits the following explicit form.

Proposition 3.1 ([EK94, Main Lemma]). On L(k−1)ρ, the trace may be expressed explicitly as

Tr(ΦN0 x
h) = (x1 · · ·xN )−

(k−1)(N−1)
2

k−1∏
a=1

∏
i<j

(xi − q2axj).

Remark. Our notation for Macdonald polynomials is related to that of [EK94] via PEKλ (x; q, t) = Pλ(x; q2, t2).

3.3. Braid group action, PBW theorem, and integral forms. In this section, we define an integral
form U ′q(glN ) ⊂ Uq(glN ) which will allow us to realize it as a quantum deformation of the Poisson algebra
C[BN ] in the sense of [dCP93, Section 11]. For this, we require Lusztig’s braid group action on Uq(glN ).
Following [Lus90], the braid group BN = 〈T1, . . . , TN−1 | TiTi+1Ti = Ti+1TiTi+1〉 of type AN−1 acts via
algebra automorphisms on Uq(glN ) by

Ti(ei) = −fiqhi−hi+1 Ti(ei±1) = q−1ei±1ei − eiei±1 Ti(ej) = ej for |i− j| > 1

Ti(fi) = −q−hi+hi+1ei Ti(fi±1) = qfi±1fi − fifi±1 Ti(fj) = fj for |i− j| > 1

Ti(q
hi/2) = qhi+1/2 Ti(q

hi+1/2) = qhi/2 Ti(q
hj/2) = qhj/2 for j 6= i, i+ 1.

Let U ′q(glN ) be the smallest C[q±1/2]-subalgebra of Uq(glN ) containing

ēi = (q − q−1)ei, f̄i = (q − q−1)fi, qhi/2

and stable under the action of BN described above. For a choice of simple roots {α1, . . . , αN−1} and a fixed
decomposition w0 = si1 · · · siM of the longest word w0 in SN , let βl = si1 · · · sil−1

(αl) and define

eβl = (q − q−1)Ti1 · · ·Til−1
(el) and fβl = (q − q−1)Ti1 · · ·Til−1

(fl).

By the PBW theorem, U ′q(glN ) has a C[q±1/2]-basis given by monomials

ek1

β1
· · · ekMβM q

hf
lM
βM · · · f

l1
β1
.

Following [dCP93, Section 10], assign such a monomial a degree of

deg
(
ek1

β1
· · · ekMβM q

hf
lM
βM · · · f

l1
β1

)
=
(
kM , . . . , k1, l1, . . . , lM ,

M∑
i=1

(ki + li)ht(βi)
)
∈ Z2M+1

≥0 ,

where if β =
∑
i ciαi as the sum of simple roots, its height is ht(β) =

∑
i ci. The algebra U ′q(glN ) is a

Z2M+1
≥0 -filtered algebra under the degree filtration, known as the de Concini-Kac filtration.

Proposition 3.2 ([dCP93, Section 10]). The associated graded of U ′q(glN ) under the de Concini-Kac filtra-

tion is generated by eβi , fβi , q
hi/2 subject to the relations

[qhi/2, qhj/2] = 0, qhi/2eβj = qβj,ieβjq
hi/2, qhi/2fβj = q−βj,ifβjq

hi/2

[eβi , fβj ] = 0, eβieβj = q(βi,βj)eβjeβi for i > j, fβifβj = q(βi,βj)fβjfβi for i > j.
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3.4. Infinitesimal dressing action and Poisson bracket. In what follows, we will consider functions on
BN pulled back from matrix elements of P+

N via the map sym : BN → P+
N as in the statement of Theorem

5.2. The derivative of the dressing action of UN on BN yields a map of vector fields dr : uN → Vect(BN )
called the infinitesimal dressing action. Let δ : C[BN ]→ C[BN ]⊗C[BN ] and S : C[BN ]→ C[BN ] denote the
coproduct and antipode on C[BN ]. In [Lu93], it is shown that the infinitesimal uN -action may be realized
via the Poisson bracket.

Proposition 3.3 ([Lu93, Theorem 3.10]). For f ∈ C[BN ] with δ(f) =
∑
i f

(1)
i ⊗ f

(2)
i , the infinitesimal

dressing action of df |e ∈ T ∗e (BN ) ' uN on C[BN ] is implemented via the vector field

σf := −
∑
i

S(f
(2)
i ){f (1)

i ,−}.

3.5. Degeneration of U ′q(glN ). It is shown in [dCP93, Section 12] that U ′q(glN ) is a quantum deformation
of C[BN ]. To interpret this statement, let GL∗N , the Poisson-Lie group dual to GLN , be given explicitly by

GL∗N =
{

(g, f) | g, f ∈ GLN , g lower triangular, f upper triangular, gii = f−1
ii

}
.

Taking the real form f∗ = g−1 on GL∗N yields C[BN ] as the corresponding ?-Poisson Hopf algebra. Under
this identification, we have the following result of [dCKP92].

Theorem 3.4 ([dCKP92, Theorem 7.6 and Remark 7.7(c)]). The algebra U ′q(glN ) satisfies:

(1) U ′q(glN ) is flat over C[q±1/2];

(2) we have an isomorphism U ′q(glN ) ⊗
C[q±1/2]

C(q1/2) ' Uq(glN );

(3) U ′q(glN )/(q1/2 − 1)U ′q(glN ) is commutative;
(4) there is an isomorphism of Hopf algebras

π : U ′q(glN )/(q1/2 − 1)U ′q(glN )→ C[BN ]

which satisfies

π
(

(4(q1/2 − 1))−1[x, y]
)

= {π(x), π(y)};

(5) π takes the special value π(qhi) =
(

det(Xi)
det(Xi−1)

)1/2

.

Remark. Note that (4(q1/2 − 1))−1[x, y] is a well-defined element of U ′q(glN ) by Theorem 3.4(c).

For r which is not a root of unity, define Ũr(glN ) to be the corresponding numerical specialization of

U ′q(glN ). Denote the specialization map by πr : U ′q(glN ) → Ũr(glN ). Define also the map of C-algebras
ϕ : U ′q(glN )→ U ′q(glN ) by

(3.1) ϕ(ei) = ei, ϕ(f i) = f i, ϕ(qhi) = q−hi , ϕ(q) = q−1.

Theorem 3.5. Fix z ∈ U ′q(glN ). For sequences of dominant integral signatures {λm} and real quantization
parameters {qm} so that limm→∞ qm → 1 and limm→∞−2 log(qm)λm = λ is dominant regular, we have

lim
m→∞

(−2 log(qm))N(N−1)/2Tr|Lλm (πqm(z) · q−2(s,h)
m ) =

∫
OΛ

π(ϕ(z))
N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ,

where we consider Lλm as a representation of Ũqm(glN ) and det(Xl) as a function on BN via composition
with sym : BN → P+

N and where Xl is the principal l × l submatrix of X ∈ OΛ ⊂ P+
N .
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Proof. It suffices to consider monomials z, for which we induct on degree. For the base case, monomials of
degree 0 lie in the Cartan subalgebra, so we have z = q

∑
i 2cihi for some ci. In this case, we have

lim
m→∞

(−2 log(qm))N(N−1)/2Tr|Lλm (πqm(z) · q−2(s,h)
m )

= lim
m→∞

(−2 log(qm))N(N−1)/2Tr|Lλm (e−2 log(q)
∑
i(−ci+si)hi)

= lim
m→∞

(−2 log(qm))N(N−1)/2

∏
i<j(−ci + si + cj − sj)/m∏

i<j(e
−ci+si+cj−sj

2m − e
−cj+sj+ci−si

2m )

∫
Oλm+ρ

e−2 log(q)
∑
i(−ci+si)Xiidµλm+ρ

= lim
m→∞

∫
O−2 log(q)(λm+ρ)

e
∑
i(−ci+si)Xiidµ−2 log(q)(λm+ρ)

=

∫
OΛ

N∏
l=1

(
det(Xl)

det(Xl−1)

)−cl+sl
dµΛ,

where the second equality follows from Kirillov’s character formula, the third from a change of variables and
(2.1), and the last by the Ginzburg-Weinstein isomorphism. The fact that

π
(
ϕ(q

∑
i 2cihi)

)
= π(q−

∑
i 2cihi) =

N∏
l=1

(
det(Xl)

det(Xl−1)

)−cl
by Theorem 3.4 completes the base case.

Suppose that z =
∏
i e
ki
βi
qh
∏
i f

li
βi is a PBW monomial of non-zero degree and the claim holds for all

monomials of smaller degree. If all ki are 0, not all li can be 0, so the limiting trace is 0; similarly, π(z) is
not invariant under the torus action in this case, so the integral is also 0. Otherwise, let i∗ be minimal so

that ki∗ > 0, and write z = abc with a = eβi∗ , b = eki∗−1
βi∗

∏
i>i∗ e

ki
βi
qh, and c =

∏
i f

li
βi . We then have that

Tr|Lλm (πqm(z)q−2(s,h)
m ) = Tr|Lλm (πqm(bc)q−2(s,h)

m πqm(a))

= Tr|Lλm (πqm(bca)q−2(s,βi∗ )
m q−2(s,h)

m )

= q−2(s,βi∗ )
m Tr|Lλm

(
πqm(abc+ [b, a]c+ b[c, a])q−2(s,h)

m

)
.

By the relations in Proposition 3.2, we see that

[b, a] = (qf(b,a) − 1)ab+ (terms of lower degree)

for some function f(b, a). This means that [b, a]− (qf(b,a) − 1)ab lies in a lower degree of the filtration than
ab. Solving for the new trace in the rewritten equation

Tr|Lλm (πqm(z)q−2(s,h)
m ) = q−2(s,βi∗ )

m Tr|Lλm
(
πqm(qf(b,a)z + ([b, a]c− (qf(b,a) − 1)abc) + b[c, a])q−2(s,h)

m

)
yields the solution

Tr|Lλm (πqm(z)q−2(s,h)
m ) =

q
−(s,βi∗ )
m 4(1− q1/2

m )

1− q−2(s,βi∗ )+f(b,a)
m

Tr|Lλm
(
πqm

( ([b, a]c− (qf(b,a) − 1)abc) + b[c, a]

4(1− q1/2)

)
q−2(s,h)
m

)
.

Using the notation πa := π(ϕ(a)), πb := π(ϕ(b)), and πc := π(ϕ(c)), notice that

π

(
ϕ
( ([b, a]c− (qf(b,a) − 1)abc) + b[c, a]

4(1− q1/2)

))
= {πb, πa}πc +

1

2
f(b, a)πaπbπc + πb{πc, πa}.

Because ([b, a]c − (qf(b,a) − 1)abc) + b[c, a] lies in a lower degree of the filtration than abc, we conclude by
the inductive hypothesis that

(3.2) lim
m→∞

(−2 log(qm))N(N−1)/2Tr|Lλm (πqm(z)q−2(s,h)
m )

=
1

−(s, βi∗) + f(b, a)/2

∫
OΛ

(
{πb, πa}πc +

1

2
f(b, a)πaπbπc + πb{πc, πa}

) N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ.
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On the other hand, because integrating against Liouville measure kills Poisson brackets and{
N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
, π(eβi∗ )

}
= (s, βi∗)

N∏
l=1

det(Xl)

det(Xl−1)
π(eβi∗ ),

we have that

0 =

∫
OΛ

{
πbπc

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
, πa

}
dµΛ

=

∫
OΛ

({πb, πa}πc + πb{πc, πa}+ (s, βi∗)πaπbπc)

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ,

which implies that∫
OΛ

({πb, πa}πc + πb{πc, πa})
N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ = −

∫
OΛ

(s, βi∗)πaπbπc

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ.

Substituting this into (3.2) completes the induction by yielding the desired

lim
m→∞

(−2 log(qm))N(N−1)/2Tr|Lλm (πqm(z)q−2(s,h)
m ) =

∫
OΛ

πaπbπc

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ. �

3.6. Degenerations of intertwiners. We now degenerate ΦNλ to Fk−1, for which we wish to represent ΦNλ
as the evaluation of an element of U ′q(glN )⊗Wk−1 under the map ev : U ′q(glN )→ EndC(Lλ+(k−1)ρ, Lλ+(k−1)ρ).

Consider the space of invariants (U ′q(glN )⊗Wk−1)U
′
q(glN ), where the action is given by

(3.3) x · (u⊗ w) =
∑

x(1)uS(x(3))⊗ x(2)w

in the Sweedler notation

∆(3)(x) =
∑

x(1) ⊗ x(2) ⊗ x(3).

We first show that this space of invariants maps to the space of intertwiners under evaluation.

Lemma 3.6. The action of the first tensor factor on Lλ+(k−1)ρ sends (U ′q(glN )⊗Wk−1)U
′
q(glN ) to an inter-

twiner Lλ+(k−1)ρ → Lλ+(k−1)ρ ⊗Wk−1.

Proof. Let z =
∑
i xi ⊗ wi be an element of (U ′q(glN ) ⊗Wk−1)U

′
q(glN ). By invariance under U ′q(glN ), the

action of qhj satisfies

z = q±hj · z =
∑
i

q±hjxiq
∓hj ⊗ q±hjwi,

which implies that ∑
i

xiq
∓hj ⊗ wi =

∑
i

q±hjxi ⊗ q±hjwi.

The action of ej satisfies

0 = ej · z =
∑
i

(
ejxiq

(hj−hj+1)/2 ⊗ q−(hj−hj+1)/2wi

+ q(hj−hj+1)/2xiq
(hj−hj+1)/2 ⊗ ejwi − q−1q(hj−hj+1)/2xiej ⊗ q(hj−hj+1)/2wi

)
,

which upon noting that qhjxiq
−hj ⊗ wi = xi ⊗ q−hjwi implies that∑

i

xiej⊗wi =
∑
i

(
qq−(hj−hj+1)/2ejxiq

−(hj−hj+1)⊗q−(hj−hj+1)wi+qxiq
(hj−hj+1)/2⊗q−(hj−hj+1)/2ejwi

)
=
∑
i

(
ejxi ⊗ q−(hj−hj+1)/2wi + q(hj−hj+1)/2xi ⊗ ejwi

)
= ∆(ej)z.

A similar computation for f j yields that
∑
i xif j ⊗ wi = ∆(f j)z, so z gives the desired intertwiner. �
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The degeneration π : U ′q(glN )→ C[BN ] and the automorphism ϕ of (3.1) give rise to a map

(π ◦ ϕ)⊗ 1 : (U ′q(glN )⊗Wk−1)U
′
q(glN ) → C[BN ]⊗Wk−1.

The left dressing action on the first tensor factor gives a U(un) action on C[BN ]⊗Wk−1; we now show that
(π ◦ ϕ)⊗ 1 lands in the space of invariants for this action.

Lemma 3.7. The image of (U ′q(glN )⊗Wk−1)U
′
q(glN ) under (π ◦ ϕ)⊗ 1 lies in (C[BN ]⊗Wk−1)U(uN ).

Proof. Let z be an element of (U ′q(glN )⊗Wk−1)U
′
q(glN ), and let z′ = ((π ◦ ϕ)⊗ 1)(z). Write z =

∑
l xl ⊗wl

and z′ =
∑
l x
′
l ⊗ wl for xl ∈ U ′q(glN ), x′l = π(ϕ(xl)) ∈ C[BN ], and wl ∈ Wk−1. By invariance, z lies in

the zero weight space, so z′ lies in the zero weight space of C[BN ] ⊗Wk−1. By definition of the action of
ej − f j ∈ U ′q(glN ) on z and the fact that z has weight 0, we have

0 =
∑
l

(
ejxlq

(hj−hj+1)/2 ⊗ q(hj+1−hj)/2wl − q−1q(hj−hj+1)/2xlej ⊗ q(hj−hj+1)/2wl

)
−
∑
l

(
f jxlq

(hj−hj+1)/2 ⊗ q(hj+1−hj)/2wl − qq(hj−hj+1)/2xlf j ⊗ q(hj−hj+1)/2wl

)
+
∑
l

(
q(hj−hj+1)/2xlq

(hj−hj+1)/2 ⊗ ejwl
)
− q(hj−hj+1)/2xlq

(hj−hj+1)/2 ⊗ f jwl
)

=
∑
l

(
ejq

(hj−hj+1)/2xl ⊗ wl − xlejq(hj−hj+1)/2 ⊗ wl
)

−
∑
l

(
f jq

(hj−hj+1)/2xl ⊗ wl − xlf jq(hj−hj+1)/2 ⊗ wl
)

+
∑
l

(
q(hj−hj+1)/2xlq

(hj−hj+1)/2 ⊗ ejwl
)
− q(hj−hj+1)/2xlq

(hj−hj+1)/2 ⊗ f jwl
)
.

Dividing this equality by 4(q1/2 − 1), noting that for any x we have

[ejq
(hj−hj+1)/2, x] = ej [q

(hj−hj+1)/2, x] + [ej , x]q(hj−hj+1)/2

and

[f jq
(hj−hj+1)/2, x] = f j [q

(hj−hj+1)/2, x] + [f j , x]q(hj−hj+1)/2,

applying (π ◦ ϕ)⊗ 1, and multiplying by π(qhj−hj+1), we find that

0 =
∑
l

(
π(qhj−hj+1)π(ej − f j){π(q−(hj−hj+1)/2), x′l}+ π(q(hj−hj+1)/2){π(ej − f j), x′l}

)
⊗ wl

+
∑
l

x′l ⊗ (Ej,j+1 − Ej+1,j) · wl

=
∑
l

(
π(q(hj−hj+1)/2){π(ej − f j), x′l} − π(ej − f j){π(q(hj−hj+1)/2), x′l}

)
⊗ wl

+
∑
l

x′l ⊗ (Ej,j+1 − Ej+1,j) · wl,

where (Ej,j+1 − Ej+1,j) · wl denotes the action of Ej,j+1 − Ej+1,j ∈ uN on wl ∈ Wk−1. By Proposition 3.3,

the dressing action of dπ(ej − f j)|e is implemented by the vector field

σπ(ej−fj)
= −π(q−(hj−hj+1)/2){π(ej − f j),−}+ π(ej − f j){π(q−(hj−hj+1)/2),−},

which means that

π(q(hj−hj+1)/2){π(ej − f j), x′l} − π(ej − f j){π(q(hj−hj+1)/2), x′l} = −σπ(ej−fj)
(x′l)

and hence that ∑
l

σπ(ej−fj)
(x′l)⊗ wl =

∑
l

x′l ⊗ (Ej,j+1 − Ej+1,j) · wl.
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Under the identification T ∗eBN ' uN , we have dπ(ej − f j)|e = Ej,j+1 −Ej+1,j in uN by [dCKP92, Theorem
7.6(b)], so we conclude that z′ is invariant under the action of Ej,j+1−Ej+1,j ∈ U(uN ). A similar argument
yields invariance under the action of iEj,j+1 + iEj+1,j , completing the proof. �

Lemma 3.8. For any k, there exists an element ck ∈ U ′q(glN )⊗Wk−1 so that

((π ◦ ϕ)⊗ 1)(ck)|OΛ
= Fk−1

and the intertwiner ΦNλ is implemented by ck|Lλ+(k−1)ρ
.

Proof. We show that (U ′q(glN ) ⊗Wk−1)U
′
q(glN ) is non-zero under the action of (3.3) and then normalize an

element of it appropriately. For this, we first show that it is non-zero under the adjoint action

(3.4) x · (u⊗ w) =
∑

x(1)uS(x(2))⊗ x(3)w.

1. Showing the space of invariants for the action (3.4) is non-zero: Following [JL94], let F(Uq(glN )) denote
the locally finite part of Uq(glN ) under the adjoint action. By [JL94, Theorem 7.4], there is an isomorphism

F(Uq(glN )) ' Z(Uq(glN ))⊗Hq

for Z(Uq(glN )) the center of Uq(glN ) and Hq a Uq(glN )-submodule of F(Uq(glN )) under the adjoint action
which is a direct sum of dimV [0] copies of each finite dimensional representation V of Uq(glN ). Because
W ∗k−1 has a one-dimensional zero weight space, there exists an embedding W ∗k−1 → Uq(glN ) of Uq(glN )-
representations and therefore a non-zero invariant element under the action of (3.4).
2. Showing the space of invariants for the action (3.3) is non-zero: Let P denote the transposition map and
R the universal R-matrix of U ′q(glN ) and let P23 and R23 denote their application in the second and third
tensor factor. Consider the diagram of maps of U ′q(glN )-representations

U ′q(glN )⊗Wk−1 ⊗ U ′q(glN ) �
P23R23

U ′q(glN )⊗ U ′q(glN )⊗Wk−1

(U ′q(glN )⊗Wk−1)(3.3)

(m13 ◦ S3)⊗ 1

?
(U ′q(glN )⊗Wk−1)(3.4)

(m12 ◦ S2)⊗ 1

?

where the U ′q(glN )-actions on U ′q(glN )⊗Wk−1 are given by (3.3) and (3.4) as specified. We claim that P23R23

maps the kernels K3 and K2 of (m13 ◦ S3)⊗ 1 and (m12 ◦ S2)⊗ 1 to each other. Indeed, if
∑
i ui ⊗ vi ⊗ wi

is in K2, then writing R =
∑
j aj ⊗ bj , we see that

((m13 ◦ S3)⊗ 1)P23R23

(∑
i

ui ⊗ vi ⊗ wi
)

= ((m13 ◦ S3)⊗ 1)
(∑
i,j

ui ⊗ bjwi ⊗ ajvi
)

=
∑
i,j

uiS(vi)S(aj)⊗ bjwi = 0,

where we note that

((m12 ◦ S2)⊗ 1)
(∑

i

ui ⊗ vi ⊗ wi
)

=
∑
i

uiS(vi)⊗ wi = 0.

A similar argument shows that (P23R23)−1 maps K3 to K2. Now, we showed that (U ′q(glN )⊗Wk−1)
U ′q(glN )

(3.4)

is non-zero. Choose a one-dimensional space of such invariants and let its preimage under (m12 ◦ S2) ⊗ 1
be V ⊂ U ′q(glN ) ⊗ U ′q(glN ) ⊗ Wk−1 so that V/K3 ' C as U ′q(glN )-representations. We conclude that

P23R23(V )/K2 ' C, implying that (U ′q(glN )⊗Wk−1)
U ′q(glN )

(3.3) is non-zero.

3. Choosing a normalized invariant: Choose a non-zero element ck ∈ (U ′q(glN )⊗Wk−1)
U ′q(glN )

(3.3) , normalized so

that by Lemma 3.6, we have ΦNλ = ck|Lλ+(k−1)ρ
. Now, by Lemma 3.7, the image of ck under ((π ◦ϕ)⊗ 1) lies

in (C[BN ] ⊗Wk−1)U(uN ). On the other hand, because dimW ∗k−1[0] = 1, by [Ric79, Theorem A], W ∗k−1 has

multiplicity 1 as a U(uN )-representation in C[BN ], so (C[BN ]⊗Wk−1)U(uN ) has dimension 1. In particular,
this means that ((π ◦ ϕ)⊗ 1)(ck) restricts to a non-zero multiple of Fk−1 in (C[OΛ]⊗Wk−1)U(uN ). Because
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the normalization of ck agrees with that of ΦNλ , the projection of ck to U ′q(tN ) ⊗ wk−1 must be 1 ⊗ wk−1,
which implies that the restriction of the wk−1-component of ((π ◦ ϕ)⊗ 1)(ck) to C[TN ] is 1 and hence that

((π ◦ ϕ)⊗ 1)(ck)|OΛ
= Fk−1. �

Corollary 3.9. For sequences of dominant integral signatures {λm} and real quantization parameters {qm}
so that limm→∞ qm → 1 and limm→∞−2 log(qm)λm = λ is dominant regular, we have

lim
m→∞

(−2 log(qm))N(N−1)/2Tr|Lλm+(k−1)ρ
(πqm(ΦNλm) · q−2(s,h)

m ) =

∫
OΛ

Fk−1(X)

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ.

Proof. This follows by combining Theorem 3.5 and Lemma 3.8. �

Corollary 3.10. For sequences of dominant integral signatures {λm} and real quantization parameters {qm}
so that limm→∞ qm → 1 and limm→∞−2 log(qm)λm = λ is dominant regular, we have

lim
m→∞

(−2 log(qm))kN(N−1)/2Pλm(q−2s
m ; q2

m, q
2k
m ) =

∫
OΛ

Fk−1(X)
∏N
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ∏k−1

a=1

∏
i<j(si − sj − a)

.

Proof. Set λm = mλ+ (k − 1)ρ in Corollary 3.9 and explicitly take the limit in Proposition 3.1. �

3.7. Degeneration of Macdonald operators. We now put everything together to show that the limiting
integral expression satisfies a differential equation in the indices. This differential equation will be a scaling
limit of the difference equations satisfied as a result of the Macdonald symmetry identity, recalled below.
For this, we abuse notation to write Dr

N,q2λ+2kρ for difference operators acting on additive indices λ as well

as multiplicative variables q2λ+2kρ. Denote also by [a]q the q-number [a]q := qa−q−a
q−q−1 and [a]q,l the falling

q-factorial [a]q,l := [a]q · · · [a− l + 1]q.

Proposition 3.11 (Macdonald symmetry identity). We have

Pλ(q2µ+2kρ; q2, q2k) =
∏
i<j

[λi − λj + k(j − i) + k − 1]q,k
[µi − µj + k(j − i) + k − 1]q,k

Pµ(q2λ+2kρ; q2, q2k).

Proposition 3.12. The operator

D̃r
N,q2λ+2kρ(q

2, q2k) =
∏
i<j

[λi − λj + k(j − i) + k− 1]q,k ◦Dr
N,q2λ+2kρ(q

2, q2k) ◦
∏
i<j

[λi − λj + k(j − i) + k− 1]−1
q,k

satisfies

D̃r
N,q2λ+2kρ(q

2, q2k) =
∑
|I|=r

∏
i∈I,j /∈I,i>j

[λi − λj + k(j − i) + k]q[λi − λj + k(j − i)− k + 1]q
[λi − λj + k(j − i)]q[λi − λj + k(j − i) + 1]q

Tq2,I

and

D̃r
N,q2λ+2kρ(q

2, q2k)Pλ(x; q2, q2k) = er(x)Pλ(x; q2, q2k).

Proof. The expression for D̃r
N,q2λ+2kρ(q

2, q2k) follows by direct computation, and the eigenvalue identity from

the Macdonald symmetry identity. �

Consider now the operator

Dλ(q) = D1
N,q2λ+2kρ(q

2, q2k)2 − 2D2
N,q2λ+2kρ(q

2, q2k)− 2D1
N,q2λ+2kρ(q

2, q2k) +N.

By Proposition 3.12, Dλ(q) acts by
∑
i(xi − 1)2 on∏

i<j

[λm,i − λm,j + k(j − i) + k − 1]−1
q,kPλ(x; q2, q2k).

We characterize the scaling limit of Dλ(q) as a second-order differential operator in the following lemma,
whose proof is computational and deferred to Subsection 6.1
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Lemma 3.13. Suppose that {fm} is a sequence of functions so that for {qm} and {λm} with limm→∞ qm = 1
and limm→∞−2 log(qm)λm = λ, we have limm→∞ fm(λm; qm) = f(λ) for a twice-differentiable function f .
Then we have

lim
m→∞

(−2 log(qm))−2Dλm(qm)fm(λm; qm) = L
trig

p2
(k)f(λ).

Combining Lemma 3.13 and our results on the degeneration of Macdonald polynomials implies that our
representation-valued integrals are diagonalized by the trigonometric Calogero-Moser Hamiltonian.

Theorem 3.14. The trigonometric Calogero-Moser Hamiltonian L
trig

p2
(k) is diagonalized on

1∏
i<j(e

λi−λj
2 − e−

λi−λj
2 )k

∏k−1
a=1

∏
i<j(si − sj − a)

∫
OΛ

Fk−1(X)

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ

with eigenvalue
∑
i s

2
i .

Proof. Take any sequence {qm} and {λm} so that limm→∞ qm = 1 and limm→∞−2 log(qm)λm = λ; for
instance, we may take qm = e−1/2m and λm = bmλc. Notice that

lim
m→∞

(2 log(qm))kN(N−1)/2
∏
i<j

[λm,i − λm,j + k(j − i) + k − 1]qm,k =
∏
i<j

(e
λi−λj

2 − e−
λi−λj

2 )k

so that by Corollary 3.10 we have

lim
m→∞

(−1)kN(N−1)/2
∏
i<j

[λm,i − λm,j + k(j − i) + k − 1]−1
qm,k

Pλm(q−2s
m ; q2

m, q
2k
m )

= ek(N−1)/2
∑
i λi

∫
OΛ

Fk−1(X)
∏N
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ∏

i<j(e
λi−λj

2 − e−
λi−λj

2 )k
∏k−1
a=1

∏
i<j(si − sj − a)

.

Note now that Dλm(qm) acts by
∑
i(xi − 1)2 =

∑
i(q
−2si
m − 1)2 on∏

i<j

[λm,i − λm,j + k(j − i) + k − 1]−1
qm,k

Pλm(q−2s
m ; q2

m, q
2k
m ),

where limm→∞(−2 log(qm))−2
∑
i(q
−2si
m − 1)2 =

∑
i s

2
i . Therefore, by Lemma 3.13, we have

L
trig

p2
(k)

∫
OΛ

Fk−1(X)
∏N
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ∏

i<j(e
λi−λj

2 − e−
λi−λj

2 )k
∏k−1
a=1

∏
i<j(si − sj − a)

= lim
m→∞

(−1)kN(N−1)/2(−2 log(qm))−2Dλm(qm)
∏
i<j

[λm,i − λm,j + k(j − i) + k − 1]−1
qm,k

Pλm(q−2s
m ; q2

m, q
2k
m )

=
(∑

i

s2
i

) ∫
OΛ

Fk−1(X)
∏N
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ∏

i<j(e
λi−λj

2 − e−
λi−λj

2 )k
∏k−1
a=1

∏
i<j(si − sj − a)

. �

4. The rational case

4.1. Statement of the result. Recall that fk−1 : Oλ → Wk−1 is the unique UN -equivariant map so that
fk−1(λ) = wk−1. Define the representation-valued integral

ψk(λ, s) =

∫
X∈Oλ

fk−1(X)e
∑N
l=1 slXlldµλ

over the coadjoint orbit Oλ. The integrand and Liouville measure are invariant under the action of the
maximal torus of UN , so ψk(λ, s) lies in Wk−1[0] = C ·wk−1. We interpret the integrals ψk(λ, s) as complex-
valued functions by identifying C · wk−1 with C. Our first result relates these integrals to the multivariate
Bessel functions.
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Theorem 4.1. The multivariate Bessel function Bk(λ, s) admits the integral representation

Bk(λ, s) =
Γ(Nk) · · ·Γ(k)

Γ(k)N
∏
i<j(λi − λj)k

∏
i<j(si − sj)k−1

∫
X∈Oλ

fk−1(X)e
∑N
l=1 slXlldµλ.

4.2. Adjoints of rational Calogero-Moser operators. The rational Dunkl operators in variables µi are

(4.1) Dµi(k) = ∂i − k
∑
j 6=i

1

µi − µj
(1− sij),

where sij exchanges µi and µj . Let m denote the restriction of a differential-difference operator to its
differential part. For a symmetric polynomial p, recall that

m(p(Dµi(k))) = Lp(k),

for Lp(k) was defined in (1.1) as a conjugate of the rational Calogero-Moser Hamiltonian corresponding
to p. Define Dµi(k)† := −Dµi(k) to be the formal adjoint for Dµi(k) with respect to the inner product

〈f, g〉 =
∫
f(µ)g(µ)∆(µ)−2kdµ. We characterize the adjoint of Lp(k) in terms of Dµi(k)† by Proposition 4.2.

For multi-indices α = (αi) and β = (βi), write β ≤ α if αi ≤ βi for all i.

Proposition 4.2. Let A be a rectangular domain. Let p =
∑
α cαµ

α be a symmetric function and f and
g be symmetric functions on A. If for each non-zero monomial µα appearing in p, ∂βµf vanishes on the
boundary of A for any β ≤ α, then we have the adjunction relation∫

A

(Lp(k)f(µ)) g(µ) ∆(µ)−2kdµ =

∫
A

f(µ)m(p(Dµi(k)†)(g(µ)) ∆(µ)−2kdµ.

Proof. If A is replaced by RN , the statement holds because the adjoint and formal adjoint of Dµi(k) coincide.

The adjoint of Lp(k) as a differential operator does not depend on the domain. Therefore, integration by
parts shows the two sides of the desired relation differ by the sum of several terms, each of which contains a
factor which is the evaluation of ∂βµ(f) on a point of the boundary of A for some β ≤ α with µα appearing
in p. These terms vanish, giving the lemma. �

4.3. A matrix element computation. Recall that sequences {λi}1≤i≤N and {µi}1≤i≤N−1 interlace if

λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ λN−1 ≥ µN−1 ≥ λN ,

which we denote by µ ≺ λ. Define the real matrix u(µ, λ) by

u(µ, λ)ij =


( ∏

l(µl−λj)∏
l6=j(λl−λj)

)1/2

i = N

(λj − µi)−1
( ∏

l(µl−λj)∏
l6=j(λl−λj)

)1/2 (
−

∏
l(λl−µi)∏
l6=i(µl−µi)

)1/2

i < N,

where each square root is applied to a non-negative real number because µ ≺ λ, and we take the non-negative
branch. The following lemma, whose proof is given in Section 6.2, shows that u(µ, λ) conjugates a diagonal
matrix to a matrix with diagonal principal submatrix.

Lemma 4.3. The matrix u(µ, λ) is unitary, and the (N − 1)× (N − 1) principal submatrix of

u(µ, λ) diag(λ1, . . . , λN )u(µ, λ)∗

is diag(µ1, . . . , µN−1).

We would like to understand a specific matrix element of u(µ, λ) in Wk−1. For this, notice that Wk−1 '
Sym(k−1)NCN as an SUN -representation via an isomorphism sending wk−1 to (x1 · · ·xN )k−1. We now
compute an auxiliary quantity. Let Zk(µ, λ) denote the coefficient of (x1 · · ·xl)k in the polynomial

1

(l −N + 1)!

l∏
j=1

(
N−1∑
i=1

xi
µi − λj

+ xN + · · ·+ xl

)k
.

By Proposition 4.4, we may express Zk(µ, λ) via a conjugated Calogero-Moser Hamiltonian, where we recall
that Lp(k) was defined in (1.1); we defer the proof to Section 6.3. The computation of the desired matrix
element of u(µ, λ) is an easy consequence.
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Proposition 4.4. We may write

Zk(µ, λ) = k!−(N−1)∆(µ, λ)−kLµN−1···µ1
(k)k∆(µ, λ)k.

Remark. It is convenient for us to formulate and prove Proposition 4.4 for general l. However, in our main
application Lemma 4.5, it will be only be used with l = N .

Lemma 4.5. The coefficient of (x1 · · ·xN−1)k−1 in u(µ, λ) · (x1 · · ·xN−1)k−1 is

(−1)(k−1)N(N−1)/2(k − 1)!−(N−1)∆(µ)1−k∆(λ)1−k(Lµ1···µN−1
(k − 1)†)k−1∆(µ, λ)k−1.

Proof. By Lemma 4.3, the desired coefficient is given by

(−1)(k−1)(N+2)(N−1)/2 ∆(µ, λ)k−1

∆(µ)k−1∆(λ)k−1
Zk−1(µ, λ),

which by Proposition 4.4 is equal to

(−1)(k−1)(N+2)(N−1)/2(k − 1)!−(N−1)∆(µ)1−k∆(λ)1−kLµN−1···µ1
(k − 1)k−1∆(µ, λ)k−1.

To recover the desired form, it remains to notice that

(−1)N−1LµN−1···µ1
(k − 1)k−1 = (LµN−1···µ1

(k − 1)k−1)†. �

4.4. Proof of Theorem 4.1. Integrating over Liouville tori of the Gelfand-Tsetlin integrable system on
Oλ yields the expression

ψk(λ, s) =

∫
µ∈GTλ

∫
t∈T,X0∈gt−1(µ)

fk−1(t ·X0)dt e
∑N
l=1 sl(

∑
i µ

l
i−

∑
i µ

l−1
i )gt∗(dµλ),

where dt is an invariant probability measure on T and µli are the Gelfand-Tsetlin coordinates. Recall that
gt∗(dµλ) is equal to Lebesgue measure on GTλ by Proposition 2.2. Adopting the notations of Section 2.3,
by repeated application of Lemma 2.1 we have for t = t1 · · · tN−1 in the Gelfand-Tsetlin torus that

t ·X0 = ad(v1)t1 · ad(v2) · · · tN−1 · ad(vN ) · λ.

On the other hand, if w ∈ Wk−1 lies in C[x1, . . . , xl](xl+1 · · ·xN )k−1 under the identification of Wk−1 '
Sym(k−1)NCN of SUN -representations, then∫

Tl

tl · w dtl = {coefficient of (x1 · · ·xN )k−1 in w}.

Together, these imply that ∫
t∈T,X0∈gt−1(µ)

fk−1(t ·X0) dt =

N−1∏
m=1

Wm,

where Wm denotes the coefficient of (x1 · · ·xm)k−1 in vm · (x1 · · ·xm)k−1. Recall that vm was chosen so that
(vm diag(µm+1)v∗m)m = diag(µm), meaning by Lemma 4.5 that

Wm =
∆(µm, µm+1)k−1

∆(µm)k−1∆(µm+1)k−1
Zk−1(µm, µm+1)

=
(−1)(k−1)m(m+1)/2(k − 1)!−m

∆(µm)k−1∆(µm+1)k−1
(Lµ1···µm(k − 1)†)k−1∆(µm, µm+1)k−1.

Substituting in this result, inducting on N , applying the integral formula (1.5), and applying the shift formula

(4.2) ec
∑
i µiφk(µ, s) = φk(µ, s1 + c, . . . , sN−1 + c)
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for the integral expressions (1.5) in N − 1 variables with c = −sN , we obtain

ψk(λ, s) =

∫
µ∈GTλ

N−1∏
m=1

Wme
∑N
l=1 sl(

∑
i µ

l−
∑
i µ

l−1)
∏
l

dµli

= Γ(k)−N
∫
µ≺λ

ZN−1e
sN (

∑
i λ−

∑
i µ)

∏
1≤i<j≤N−1

(si − sj)k−1φk(µ, s)
∏
i

dµi

= esN
∑
i λiΓ(k)−N

∏
1≤i<j≤N−1

(si − sj)k−1

∫
µ≺λ

WN−1e
−sN

∑
i µiφk(µ, s1, . . . , sN−1)

∏
i

dµi

= (−1)(k−1)N(N−1)/2esN
∑
i λiΓ(k)−N∏

1≤i<j≤N−1

(si − sj)k−1

∫
µ≺λ

(Lµ1···µN−1
(k − 1)†)k−1∆(µ, λ)k−1

∆(µ)k−1∆(λ)k−1
φk(µ, s1 − sN , . . . , sN−1 − sN )

∏
i

dµi.

Applying Proposition 4.2, (4.2), and (1.4) to the last expression yields the desired expression

ψk(λ, s) =
esN

∑
i λi

∆(λ)k−1
(−1)(k−1)N(N−1)/2Γ(k)−N

∏
1≤i≤j≤N−1

(si − sj)k−1

∫
µ≺λ

∆(µ, λ)k−1

∆(µ)2(k−1)
(Lµ1···µN−1

(k − 1))k−1∆(µ)k−1φk(µ, s1 − sN , . . . , sN−1 − sN )
∏
i

dµi

= esN
∑
i λi(−1)(k−1)N(N−1)/2Γ(k)−N

∏
1≤i≤j≤N

(si − sj)k−1

∫
µ≺λ

∆(µ, λ)k−1φk(µ, s1 − sN , . . . , sN−1 − sN )

∆(µ)k−1∆(λ)k−1

∏
i

dµi

= esN
∑
i λi

∏
1≤i≤j≤N

(si − sj)k−1φk(λ, s1 − sN , . . . , sN−1 − sN , 0)

=
∏

1≤i≤j≤N

(si − sj)k−1φk(λ, s).

The result now follows from Theorem 1.2.

5. The trigonometric case

5.1. Identifying Φk(λ, s) with the Heckman-Opdam hypergeometric functions. In this subsection,
we provide details of how to relate the integral formula (1.6) for Φk(λ, s) to the Heckman-Opdam hyperge-
ometric function Fk(λ, s) for the case where k > 0 is a positive integer. We will use the characterization of
Theorem 1.1. First, we claim that the symmetric extension of ek(N−1)/2

∑
i λi∆(eλ)−kΦk(λ, s) extends to a

holomorphic function of λ on a symmetric tubular neighborhood of RN . Observe that (1.6) has the recursive
structure

Φk(λ, s)

∆(eλ)k
=

∫
µ≺λ

(−1)
(k−1)N(N−1)

2 esN (
∑
i λi−

∑
i µi)−(k−1)

∑
i µi

∆(eµ, eλ)k−1∆(eµ)

∆(eλ)2k−1

Φk(µ, s1, . . . , sN−1)

∆(eµ)k
dµ.(5.1)

We induct on N with trivial base case. For the inductive step, change variables to τi = µi−λi+1

λi−λi+1
. We obtain

Φk(λ, s)

∆(eλ)k
=

∫
[0,1]N−1

(−1)
(k−1)N(N−1)

2

∏
i

(λi − λi+1)esN (
∑
i λi−

∑
i µi)−(k−1)

∑
i µi

∆(eµ, eλ)k−1∆(eµ)

∆(eλ)2k−1

Φk(µ, s1, . . . , sN−1)

∆(eµ)k
dτ,

where we view µ as a function of τ and λ in the integrand. As a function of λ, the integrand is meromorphic
with poles away from the set {λi 6= λj}. It is easy to check that there are no poles on the subsets of
hyperplanes λi = λi+1 where no other coordinates are equal, so by Hartog’s theorem, the integrand is
holomorphic in λ. By the induction hypothesis, it is also holomorphic in τ , hence the result is holomorphic
in λ and admits the claimed extension.
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We now claim that ek(N−1)/2
∑
i λi∆(eλ)−kΦk(λ, s) satisfies the hypergeometric system; it suffices to show

Ltrig
p (k − 1)Φk(λ, s) = p(s)Φk(λ, s)

for any symmetric p. It was shown in [BG13, Proposition 6.3] that

Ltrig
p2

(k − 1)Φk(λ, s) = p2(s)Φk(λ, s)

for λ1 > · · · > λN . If s is not integral, choose w ∈ SN so that ws is dominant; a straightforward induction
using (5.1) shows that Φk(λ, s) admits a series expansion of the form

Φk(λ, s) = ce(ws,λ)−k
∑
i(N−w(i))λi + (l.o.t.),

where c is a non-zero coefficient dependent only on s and we use (l.o.t.) to denote terms of the form
cαe

(ws,λ)−k
∑
i(N−w(i))λi−(wα,λ) for α in the positive weight lattice. By the results of [HS94, Section 4.2], for

such s, any analytic symmetric eigenfunction of Ltrig
p2

(k − 1) with leading monomial

e(ws,λ)−k
∑
i(N−w(i))λi

diagonalizes Ltrig
p (k− 1) for any p. Therefore, ek(N−1)/2

∑
i λi Φk(λ,s)

∆(eλ)k
satisfies the full hypergeometric system

and is a scalar multiple of Fk(λ, s).
For generic s, we compute the normalization constant. For this, we claim by induction on N that

lim
λ→0

ek(N−1)/2
∑
i λi

Φk(λ, s)

∆(eλ)k
= lim
λ→0

Φk(λ, s)

∆(eλ)k
=

Γ(k)N

Γ(Nk) · · ·Γ(k)
.

The base case N = 2 is the beta integral. Assuming the inductive hypothesis, we have by (5.1), Taylor
expansion in µ, application of the Dixon-Anderson integral (see [For10, Equation (4.15)]), and the inductive
hypothesis that

lim
λ→0

Φk(λ, s)

∆(eλ)k
= lim
λ→0

Γ(k)−(N−1)

∫
µ≺λ

∆(µ, λ)k−1∆(µ)

∆(λ)2k−1

Φk(µ, s1, . . . , sN−1)

∆(µ)k
dµ

= Γ(k)−(N−1) · Γ(k)N

Γ(Nk)
· Γ(k)N−1

Γ((N − 1)k) · · ·Γ(k)

=
Γ(k)N

Γ(Nk) · · ·Γ(k)
.

This implies that

Fk(λ, s) =
Γ(Nk) · · ·Γ(k)

Γ(k)N
Φk(λ, s)

∆(eλ)k

for non-integral s. Both sides of the expression are holomorphic functions of s, so this continues to hold for
non-generic s, yielding Theorem 1.4.

5.2. Some properties of Φk(λ, s). In this subsection, we state some properties of Φk(λ, s) which we will
need later. As in the rational setting, we have a shift identity

(5.2) ec
∑
i λiΦk(λ, s) = Φk(λ, s1 + c, . . . , sN + c).

The shift identity allows us to prove Lemma 5.1, which shows how L
trig

p (k − 1) acts on Φk(µ, s).

Lemma 5.1. For any symmetric polynomial p, we have

∆(eµ)1−kL
trig

p (k − 1)∆(eµ)k−1Φk(µ, s) = p

(
s1 +

(N − 2)(k − 1)

2
, . . . , sN−1 +

(N − 2)(k − 1)

2

)
Φk(µ, s).

Proof. Using (1.2) and the shift identity (5.2) for Φk(µ, s), we compute

∆(eµ)1−kL
trig

p (k − 1)∆(eµ)k−1Φk(µ, s)

= e−
(N−2)(k−1)

2

∑
i µiLtrig

p (k − 1)e
(N−2)(k−1)

2

∑
i µiΦk(µ, s)

= e−
(N−2)(k−1)

2

∑
i µiLtrig

p (k − 1)Φk

(
µ, s1 +

(N − 2)(k − 1)

2
, . . . , sN−1 +

(N − 2)(k − 1)

2

)
= p

(
s1 +

(N − 2)(k − 1)

2
, . . . , sN−1 +

(N − 2)(k − 1)

2

)
Φk(µ, s). �
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5.3. Statement of the result. Let Fk−1 : OΛ → Wk−1 be the unique UN -equivariant map so that
Fk−1(Λ) = wk−1. Define the representation-valued integral

Ψk(λ, s) =

∫
X∈OΛ

Fk−1(X)

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ,

where Xl denotes the principal l × l submatrix of X. As in the rational case, the integrand and Liouville
measure in the definition of Ψk(λ, s) are invariant under the action of the maximal torus of UN , so Ψk(λ, s)
lies in Wk−1[0] = C · wk−1. We will again interpret it as a complex-valued function via the identification of
C ·wk−1 with C. Our result in the trigonometric setting uses these integrals to express the Heckman-Opdam
hypergeometric functions.

Theorem 5.2. The Heckman-Opdam hypergeometric function Fk(λ, s) admits the integral representation

Fk(λ, s) =
Γ(Nk) · · ·Γ(k)

Γ(k)N
∏
i<j(e

λi−λj
2 − e−

λi−λj
2 )k

∏k−1
a=1

∏
i<j(si − sj − a)

∫
X∈OΛ

Fk−1(X)

N∏
l=1

(
det(Xl)

det(Xl−1)

)sl
dµΛ,

where Xl is the principal l × l submatrix of X.

5.4. Adjoints of trigonometric Calogero-Moser operators. The trigonometric Dunkl operators in
variables µi are defined by

Tµi(k) = ∂i − k
∑
α>0

(α, µi)
1

1− e−α
(1− sα) + k(ρ, µi).

For a symmetric polynomial p, m(p(Tµi(k))) = L
trig

p (k) is the conjugate (1.2) of the trigonometric Calogero-
Moser Hamiltonian corresponding to p.

Remark. Our sign convention for Tµi(k) is opposite from [Hec97] for consistency with the rational case.

We require also the following result on adjoints of Tµi(k). By [Opd88a, Lemma 7.8], the formal adjoint
of Tµi(k) with respect to the inner product

〈f, g〉k =

∫
f(µ)g(µ)∆(eµ)−2kdµ

is given by

Tµi(k)† = −∂i + k
∑
j<i

eµi

eµi − eµj
(1− sij)− k

∑
j>i

eµj

eµj − eµi
(1− sij) + k

(
N

2
− i
)

(5.3)

= −∂i + k
∑
j 6=i

eµi

eµi − eµj
(1− sij) + k

∑
j>i

sij − k
N − 2

2

= −Tµi(k)− k
∑
j<i

sij + k
∑
j>i

sij .

We may again characterize the adjoint of L
trig

p (k) in terms of its formal adjoint by Proposition 5.3.

Proposition 5.3. Let A be a rectangular domain. Let p =
∑
α cαµ

α be a symmetric function and f and
g be symmetric functions on A. If for each non-zero monomial µα appearing in p, ∂βµf vanishes on the
boundary of A for any β ≤ α, then we have the adjunction relation∫

A

(L
trig

p (k)f(µ)) g(µ) ∆(eµ)−2kdµ =

∫
A

f(µ)m(p(Ti(k)†))(g(µ)) ∆(eµ)−2kdµ.

Proof. The proof is the same as for Proposition 4.2. �
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5.5. Matrix elements in the trigonometric case. Take l ≥ N − 1 and consider variables λ1, . . . , λl and
µ1, . . . , µN−1. Recall that Zk(eµ, eλ) denotes the coefficient of (x1 · · ·xl)k in the polynomial

1

(l −N + 1)!

l∏
j=1

(
N−1∑
i=1

xi
eµi − eλj

+ xN + · · ·+ xl

)k
.

We express Zk(eµ, eλ) via trigonometric Calogero-Moser Hamiltonians in Proposition 5.4.

Proposition 5.4. We have the identity

Zk(eµ, eλ) = (−1)N−1k!−(N−1)∆(eµ, eλ)−k
(
e−

∑
i µiL

trig∏N−1
i=1 (µi−kN−2

2 )(k)†
)k

∆(eµ, eλ)k.

Proof. We use the result in the rational case. By Proposition 4.4 and (1.2), it suffices to check that

e−
∑
i µi(−1)N−1

(
Tµ1

(k)† − kN − 2

2

)
· · ·
(
TµN−1

(k)† − kN − 2

2

)
= Deµ1 (k) · · ·DeµN−1 (k)

on C[eµi ]SN−1 . We may rewrite Tµi(k) in the form

(5.4) Tµi(k) = ∂µi − k
∑
j 6=i

eµi

eµi − eµj
(1− sij)− k

∑
j<i

sij + k
N − 2

2
= eµiDeµi (k)− k

∑
j<i

sij + k
N − 2

2
,

where Deµi (k) is the rational Dunkl operator in the exponential variables eµi . By (5.4), we see that

Deµi (k) = e−µi
(
Tµi(k)− k

∑
j<i

sij + k
N − 2

2

)
.

Further, we may check that Tµi(k)e−µj = e−µj (Tµi(k) − ksij), so shifting each e−µi term to the beginning
of the expression, we see by (5.4) and (5.3) that

DeµN−1 (k) · · ·Deµ1 (k) = e−
∑
i µi

N−1∏
i=1

(
Tµi(k)− k

∑
j<i

sij + k
∑
j>i

sij + k
N − 2

2

)

= e−
∑
i µi(−1)N−1

N−1∏
i=1

(
Tµi(k)† − kN − 2

2

)
. �

5.6. Proof of Theorem 5.2. We again compute Ψk(λ, s) by integrating over the Liouville tori given by
the Gelfand-Tsetlin coordinates. We may write

(5.5) Ψk(λ, s) =

∫
µ∈GTλ

∫
t∈T,X0∈GT−1(µ)

Fk−1(t ·X0)dt e
∑N
l=1 sl(

∑
i µ

l
i−

∑
i µ

l−1
i )GT∗(dµΛ),

where dt is the invariant probability measure on the torus, and µli are the logarithmic Gelfand-Tsetlin
coordinates. As in the rational case, by Lemma 2.1, we have∫

t∈T,X0∈GT−1(µ)

Fk−1(t ·X0)dt =

N−1∏
m=1

Wm,

where Wm denotes the coefficient of (x1 · · ·xm)k−1 in vm ·(x1 · · ·xm)k−1. Notice that (vm diag(eµ
m+1

)v∗m)m =
diag(eµ

m

). By Lemma 4.3, we have

Wm = (−1)(k−1)(m+3)m/2 ∆(eµ
m

, eµ
m+1

)k−1

∆(eµm)k−1∆(eµm+1)k−1
Zk−1(eµ

m

, eµ
m+1

).
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Noting that GT∗(dµΛ) = 1GTλ · dx by Proposition 2.2 and inducting on N , we transform (5.5) to

Ψk(λ, s) =

∫
µ∈GTλ

N−1∏
m=1

Wme
∑N
l=1 sl(

∑
i µ

l
i−

∑
i µ

l−1
i )

∏
i

dµli

= (−1)(k−1)(N+2)(N−1)/2

∫
µ≺λ

∆(eµ, eλ)k−1Zk−1(eµ, eλ)

∆(eµ)k−1∆(eλ)k−1
esN (

∑
i λi−

∑
i µi)

k−1∏
a=1

∏
1≤i<j≤N−1

(si − sj − a)Φk(µ, s)
∏
i

dµi

= (−1)(k−1)(N+2)(N−1)/2
k−1∏
a=1

∏
1≤i<j≤N−1

(si − sj − a)esN
∑
i λi

∫
µ≺λ

∆(eµ, eλ)k−1Zk−1(eµ, eλ)

∆(eµ)k−1∆(eλ)k−1
Φk(µ, s′)

∏
i

dµi,

where s′ =
(
s1 − sN , . . . , sN−1 − sN

)
and the last equality follows from the c = −sN case of (5.2). By

Lemma 5.1 and (5.2), we see that

(
∆(eµ)1−kL

trig∏N−1
i=1 (µi− (N−2)(k−1)

2 )(k − 1)∆(eµ)k−1e−
∑
i µi
)k−1

Φk(µ, s′) = e−(k−1)
∑
i µi

k−1∏
a=1

∏
i

(si−sN−a)Φk(µ, s′),

so by expressing Zk−1(eµ, eλ) using Proposition 5.4 and applying Proposition 5.3 and the shift identity, we
obtain the expression

Ψk(λ, s) = (−1)(k−1)N(N−1)/2
k−1∏
a=1

∏
1≤i<j≤N

(si − sj − a)esN
∑
i λi−(k−1)

∑
i µiΓ(k)−(N−1)

∫
µ≺λ

∆(eµ, eλ)k−1Φk(µ, s′)

∆(eλ)k−1∆(eµ)k−1
dµ

=

k−1∏
a=1

∏
1≤i<j≤N

(si − sj − a)Γ(k)−(N−1)

∫
µ≺λ

esN (
∑
i λi−

∑
i µi)

∆(eµ, eλ)k−1

∆(eλ)k−1∆(eµ)k−1
e−(k−1)

∑
i µiΦk(µ, s)dµ

=

k−1∏
a=1

∏
1≤i<j≤N

(si − sj − a)Φk(λ, s).

The theorem now follows by normalizing via Theorem 1.4.

6. Proofs of some technical lemmas

6.1. Proof of Lemma 3.13. For a subset I of indices, denote by 1I and 2I the vectors with 1 and 2 in the
indices of I and 0 elsewhere. We first expand the Macdonald difference operators in log(qm), yielding

Dr
N,q2λm+2kρ

m
(q2
m, q

2k
m )fm(λm; qm)

= q2r(r−n)k
m

∑
|I|=r

∏
i∈I,j /∈I

qkmq
2(λm,i−λm,j+k(j−i))
m − q−km
q

2(λm,i−λm,j+k(j−i))
m − 1

fm(λm + 1I ; qm)

=
∑
|I|=r

∏
i∈I,j /∈I

(
1 + (1− qkm)

q
2(λm,i−λm,j+k(j−i))
m + q−km

1− q2(λm,i−λm,j+k(j−i))
m

)
fm(λm + 1I ; qm)

=
∑
|I|=r

1 +
∑

i∈I,j /∈I

(1− qkm)
q

2(λm,i−λm,j+k(j−i))
m + q−km

1− q2(λm,i−λm,j+k(j−i))
m

+ Cr(λm, qm) log(qm)2

 fm(λm + 1I ; qm) +O(log(qm)3)
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for some functions Cr(λm, qm) = o(log(qm)−1). Specializing this, we see that

D1
N,q2λm+2kρ

m
(q2
m, q

2k
m )fm(λm; qm)

=

N∑
i=1

1 +
∑
j 6=i

(1− qkm)
q

2(λm,i−λm,j+k(j−i))
m + q−km

1− q2(λm,i−λm,j+k(j−i))
m

+ C1(λm, qm) log(qm)2

 fm(λm+1i; qm)+O(log(qm)3)

and

D1
N,q2λm+2kρ

m
(q2
m, q

2k
m )2fm(λm; qm)

=

N∑
i=1

(
1 + S1(λm, qm) log(qm)2

)
fm(λm + 2i; qm) +

∑
i1 6=i2

(
1 + S2(λm, qm) log(qm)2

)
fm(λm + 1i1,i2 ; qm) +O(log(qm)2)

+ (1− qkm)

N∑
i=1

∑
j 6=i

(q2(λm,i−λm,j+k(j−i))
m + q−km

1− q2(λm,i−λm,j+k(j−i))
m

+
q

2(λm,i+1−λm,j+k(j−i))
m + q−km

1− q2(λm,i+1−λm,j+k(j−i))
m

)
fm(λm + 2i; qm)

+ (1− qkm)
∑
i1 6=i2

∑
j 6=i1,i2

(q2(λm,i2−λm,j+k(j−i2))
m + q−km

1− q2(λm,i2−λm,j+k(j−i2))
m

+
q

2(λm,i1−λm,j+k(j−i1))
m + q−km

1− q2(λm,i1−λm,j1+k(j1−i1))
m

)
fm(λm + 1i1,i2 ; qm)

+ (1− qkm)
∑
i1 6=i2

(q2(λm,i2−λm,i1+k(i1−i2))
m + q−km

1− q2(λm,i2−λm,i1+k(i1−i2))
m

+
q

2(λm,i1−λm,i2−1+k(i2−i1))
m + q−km

1− q2(λm,i1−λm,i2−1+k(i2−i1))
m

)
fm(λm + 1i1,i2 ; qm)

for some functions S1(λm, qm) and S2(λm, qm), both of which are o(log(qm)−1). We define

Ai1,i2(λm, qm) =
1

1− q2
m

(q2(λm,i2−λm,i1+k(i1−i2))
m + q−km

1− q2(λm,i2−λm,i1+k(i1−i2))
m

+
q

2(λm,i1−λm,i2−1+k(i2−i1))
m + q−km

1− q2(λm,i1−λm,i2−1+k(i2−i1))
m

)
Bi,j(λm, qm) =

q
2(λm,i−λm,j+k(j−i))
m + q−km

1− q2(λm,i−λm,j+k(j−i))
m

+
q

2(λm,i+1−λm,j+k(j−i))
m + q−km

1− q2(λm,i+1−λm,j+k(j−i))
m

so that

∑
i1 6=i2

(q2(λm,i2−λm,i1+k(i1−i2))
m + q−km

1− q2(λm,i2−λm,i1+k(i1−i2))
m

+
q

2(λm,i1−λm,i2−1+k(i2−i1))
m + q−km

1− q2(λm,i1−λm,i2−1+k(i2−i1))
m

)
fm(λm + 1i1,i2 ; qm)

= (1− q2
m)
∑
i1 6=i2

Ai1,i2(λm, qm)fm(λm + 1i1,i2 ; qm) +O(log(qm)2)

and

∑
j 6=i

(q2(λm,i−λm,j+k(j−i))
m + q−km

1− q2(λm,i−λm,j+k(j−i))
m

+
q

2(λm,i+1−λm,j+k(j−i))
m + q−km

1− q2(λm,i+1−λm,j+k(j−i))
m

)
fm(λm + 2i; qm)

=
∑
j 6=i

Bi,j(λm, qm)fm(λm + 2i; qm),

Notice that

lim
m→∞

Ai1,i2(λm, qm) =
ke2λi1−2λi2 − 2(k − 2)eλi1−λi2 + k

(1− eλi1−λi2 )2
and lim

m→∞
Bi,j(λm, qm) = −2(1 + eλi−λj )

1− eλi−λj
.



24 YI SUN

We have also that

D2
N,q2λm+2kρ

m
(q2
m, q

2k
m )fm(λm; qm)

=
∑
i1 6=i2

(
1 + C2(λm, qm) log(qm)2

)
fm(λm + 1i1,i2 ; qm) +O(log(qm)2)

+ (1− qkm)
∑
i1 6=i2

∑
j 6=i1,i2

(q2(λm,i1−λm,j+k(j−i1))
m + q−km

1− q2(λm,i1−λm,j+k(j−i1))
m

)
fm(λm + 1i1,i2 ; qm)

+ (1− qkm)
∑
i1 6=i2

∑
j 6=i1,i2

(q2(λm,i2−λm,j+k(j−i2))
m + q−km

1− q2(λm,i2−λm,j+k(j−i2))
m

)
fm(λm + 1i1,i2 ; qm).

Together, these imply that

Dλm(qm)fm(λm; qm) =

N∑
i=1

1 + (1− qkm)
∑
j 6=i

Bi,j(λm, qm) + S1(λm, qm) log(qm)2

 fm(λm + 2i; qm)

− 2

N∑
i=1

1 +
∑
j 6=i

(1− qkm)
q

2(λm,i−λm,j+k(j−i))
m + q−km

1− q2(λm,i−λm,j+k(j−i))
m

 fm(λm + 1i; qm)

+ (1− qkm)(1− q2
m)
∑
i1 6=i2

Ai1,i2(λm, qm)fm(λm + 1i1,i2 ; qm)

+ (C2(λm, qm)− S2(λm, qm)) log(qm)2fm(λm + 1i1,i2 ; qm) +Nfm(λm; qm) +O(log(qm)2).

Taking limits in the previous expression yields that

lim
m→∞

(−2 log(qm))−2Dλm(qm)fm(λm; qm) = ∆f(λ)− k
∑
i 6=j

1 + eλi−λj

1− eλi−λj
∂if(λ) +R(λ)f(λ)

=
(

∆− k
∑
i<j

1 + eλi−λj

1− eλi−λj
(∂i − ∂j) +R(λ)

)
f(λ)

for some function R(λ). Note that fm(λm) ≡ 1 is the Macdonald polynomial in q2λm corresponding to the
empty partition, hence we conclude that

Dλ(q) · 1 = p2(q2kρ)− 2p1(q2kρ) +N =
∑
i

(q2kρi − 1)2,

which implies that

lim
m→∞

(−2 log(qm))−2Dλm(qm) · 1 = k2(ρ, ρ),

hence R(λ) ≡ k2(ρ, ρ). We conclude that

lim
m→∞

(−2 log(qm))−2Dλm(qm)fm(λm; qm) =
(

∆− k
∑
i<j

1 + eλi−λj

1− eλi−λj
(∂i − ∂j) + k2(ρ, ρ)

)
f(λ) = L

trig

p2
(k)f(λ).

6.2. Proof of Lemma 4.3. We verify the statement by direct computation. Write u = u(µ, λ) and λ =
diag(λ1, . . . , λN ). Define the non-negative real numbers x1, . . . , xN−1 by

x2
i = −

∏
j(λj − µi)∏
j 6=i(µj − µi)

,

where we note that the right side of the definition is non-negative because λ and µ interlace. Define y =∑
i λi −

∑
i µi. For i < N , our definition of u implies that

(6.1) uij =
xi

λj − µi
uNj .



A NEW INTEGRAL FORMULA FOR HECKMAN-OPDAM HYPERGEOMETRIC FUNCTIONS 25

We first claim that uλ = µ′u for the matrix

µ′ =



µ1 x1

µ2 x2

. . .
...

µN−2 xN−2

µN−1 xN−1

x1 x2 · · · xN−2 xN−1 y


.

For i < N , this holds for each element of row i by the equality

λjuij = µjuij + xiuNj

implied by (6.1). For row N , we must check that

λjuNj =

N−1∑
i=1

xiuij + yuNj =

(
y +

N−1∑
i=1

x2
i

λj − µi

)
uNj ,

for which it suffices to check that

(6.2)

N−1∑
i=1

∏
l 6=j(λl − µi)∏
l 6=i(µl − µi)

=
∑
i6=j

λi −
∑
i

µi.

The left side of (6.2) is a symmetric rational function in the µi which may be expressed as a quotient

P (µ)∏
i<j(µi − µj)

,

whose numerator P (µ) has degree at most N(N−1)
2 + 1 in the µ-variables. Therefore, P (µ) is antisymmetric,

meaning the quotient is symmetric of degree at most 1. In particular, it takes the form C1 + C2

∑
i µi for

C1 and C2 constant in µ. Noting that the coefficient of µN−1
1 µN−3

2 µN−4
3 · · ·µN−2 in P (µ) is −1 shows that

C2 = −1. Finally, C1 is a polynomial of degree 1 in λ, so it is given by

C1 =
∑
i

µN−2
i (−1)N−2

∑
l 6=j λl∏

l 6=i(µl − µi)
=
∑
i

µN−2
i∏

l 6=i(µi − µl)
·

∑
l 6=j

λl

 =
∑
i 6=j

λi,

where the last equality follows by noting that
∑
i

µN−2
i∏

l 6=i(µi−µl)
is symmetric of degree 0 in µ and a ratio-

nal function whose denominator is
∏
i<j(µi − µj) and whose numerator contains µN−2

1 µN−3
2 · · ·µN−2 with

coefficient 1. This establishes (6.2).
It remains to check that u is unitary. For this, we check that the columns of u are orthonormal. Choose

any 1 ≤ a < b ≤ N . We have that∑
i

uiauib =

(∑
i

x2
i

(λa − µi)(λb − µi)
+ 1

)
uNauNb =

(
1−

∑
i

∏
j 6=a,b(λj − µi)∏
j 6=i(µj − µi)

)
uNauNb.

Observe that
∑
i

∏
j 6=a,b(λj−µi)∏
j 6=i(µj−µi)

is symmetric in the µi and may be expressed as a rational function with

denominator
∏
i<j(µi − µj) and numerator of degree at most N(N−1)

2 in µ. Further, the coefficient of

µN−2
1 µN−3

2 · · ·µN−2 in the numerator is 1, so we conclude that

(6.3) 1−
∑
i

∏
j 6=a,b(λj − µi)∏
j 6=i(µj − µi)

= 0,

hence
∑
i uiauib = 0. It remains only to show that

1 =
∑
i

u2
ia =

(
1 +

∑
i

x2
i

(λa − µi)2

)
u2
Na,
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for which we must check that∏
l 6=a(λl − λa)∏
l(µl − λa)

= 1−
∑
i

∏
j 6=a(λj − µi)

(λa − µi)
∏
j 6=i(µj − µi)

,

which is equivalent to

(6.4)
∏
l 6=a

(λl − λa) =
∏
l

(µl − λa)

(
1−

∑
i

∏
j 6=a(λj − µi)

(λa − µi)
∏
j 6=i(µj − µi)

)
.

View both sides of (6.4) as polynomials in λa. If λa = λb for b 6= a, the right side becomes

1−
∑
i

∏
j 6=a,b(λj − µi)∏
j 6=i(µj − µi)

= 0

by (6.3). Therefore, both sides of (6.4) are polynomials in λa of the same degree with the same roots and
the same leading coefficient (−1)N−1, so they are equal, completing the proof.

Remark. The expressions above for x2
i and y appeared previously in [Ner03]. Similar computations appeared

also in [GK02, FR05].

6.3. Proof of Proposition 4.4. Before beginning the proof, we outline our approach. We first obtain an
alternate expression for Z1(µ, λ) in Lemma 6.1. We then observe that Zk(µ, λ) is a constant multiple of
Z1(µ′, λ′) for sets of variables µ′ and λ′ which contain k duplicate copies of each value of µ and λ. Relating
Calogero-Moser Hamiltonians at different values of k in Lemma 6.2 leads to the result. Recall here that
Dµi(κ) denote the rational Dunkl operators of (4.1).

Lemma 6.1. For any κ ∈ C, we have

∆(µ, λ)−κDµN−1
(κ) · · ·Dµ1(κ)∆(µ, λ)κ = κN−1Z1(µ, λ).

Proof. We first claim that

(6.5) ∆(µ, λ)−κDµa(κ) · · ·Dµ1
(κ)∆(µ, λ)κ = κa

∑
σ:{1,...,a}
→{1,...,l}

σ(i)6=σ(j)

a∏
i=1

(µi − λσ(i))
−1.

Taking a = N − 1 in (6.5) and expanding the product in the definition of Z1(µ, λ) then completes the
proof. We prove (6.5) by induction on a. The base case a = 1 holds because Dµ1

(κ) acts by ∂1 on the
symmetric function ∆(µ, λ)κ in µ. For the induction step, note that Dµa(κ) · · ·Dµ1

(κ)∆(µ, λ)κ is symmetric
in µa+1, . . . µN−1 by the inductive hypothesis. Applying Dµa+1 , we see that

∆(µ, λ)κDµa+1
(κ)(Dµa(κ) · · ·Dµ1

(κ)∆(µ, λ)κ)

= κa+1
l∑

j=1

(µa+1 − λj)−1
∑

σ:{1,...,a}
→{1,...,l}

σ(i)6=σ(j)

a∏
i=1

(µi − λσ(i))
−1 − κa+1

∑
σ:{1,...,a}
→{1,...,l}

σ(i)6=σ(j)

a∏
i=1

(µi − λσ(i))
−1

a∑
i=1

(µa+1 − λσ(i))
−1

= κa+1
∑

σ:{1,...,a+1}
→{1,...,l}

σ(i) 6=σ(j)

a+1∏
i=1

(µi − λσ(i))
−1,

where we repeatedly make use of the identity

1

µa+1 − µi

(
(µa+1 − λj)− (µi − λj)

)
= 1. �

Proof of Proposition 4.4. Replace l by kl and apply Lemma 6.1 with κ = 1
k , k copies of each λj , and k(N−1)

different variables µ1
1, . . . , µ

k
1 , . . . , µ

1
N−1, . . . , µ

k
N−1. We obtain

(6.6) ∆({µji}, {λi})
−1DµkN−1

(1/k) · · ·Dµ1
1
(1/k)∆({µji}, {λi}) = k−(N−1)kZ1({µji}, {λ

j
i}).



A NEW INTEGRAL FORMULA FOR HECKMAN-OPDAM HYPERGEOMETRIC FUNCTIONS 27

Now, make the specialization µ1
1 = · · · = µk1 = µ1, . . . , µ

1
N−1 = · · · = µkN−1 = µN−1. We first claim that

Z1({µji}, {λ
j
i}) = k!N−1Zk({µi}, {λi})

under this specialization. Indeed, we see that

Z1({µji}, {λ
j
i}) =

∑
σ:{1,...,(N−1)}×{1,...,k}

→{1,...,l}×{1,...,k}
σ(i1,j1) 6=σ(i2,j2)

∏
i,j

(µji − λ
σ(i,j)2

σ(i,j)1
)−1

=
∑

σ1,...,σN−1⊂{1,...,l}×{1,...,k}
|σi|=k
σi∩σj=∅

k!N−1
∏
i

∏
(j,p)∈σi

(µi − λpj )
−1

= k!N−1
∑

σ1
1 ,...,σ

1
l ,...,σ

N−1
1 ,...,σN−1

l∑
j σ

i
j=k∑

i σ
i
j≤k

∏
i

∏
j

(
k

σ1
j , . . . , σ

N−1
j

)
(µi − λj)−σ

i
j ,

which is a direct expansion of Zk({µi}, {λi}). The conclusion will now follow from Lemma 6.2, which
describes what occurs under specialization to the other side of Lemma 6.1. Indeed, applying Lemma 6.2 for
p(y) = y1

1 · · · ykN−1 to (6.6), we see that

Zk({µi}, {λi}) = k!−(N−1)k(N−1)kk−(N−1)k∆({µi}, {λi})−kDµN−1
(k)k · · ·Dµ1

(k)k∆({µi}, {λi})k

= k!−(N−1)∆({µi}, {λi})−kDµN−1
(k)k · · ·Dµ1

(k)k∆({µi}, {λi})k. �

Lemma 6.2. Let p ∈ C[y1
1 , . . . , y

k
N−1]Sk(N−1) be a symmetric polynomial. Then the map Resk : C[µji ]→ C[µi]

given by µji 7→ µi satisfies

Resk ◦ p(Dµ1
1
(k−1), . . . , DµkN−1

(k−1)) = p
(1

k
Dµ1

(k), . . . ,
1

k
Dµ1

(k), . . . ,
1

k
DµN−1

(k), . . . ,
1

k
DµN−1

(k)
)
◦ Resk.

Proof. Let H1/k,(N−1)k and Hk,(N−1) denote the rational Cherednik algebras of S(N−1)k and SN−1, respec-

tively. Within H1/k,(N−1)k and Hk,(N−1), denote the power sums pa(x) =
∑
i,j(x

j
i )
a and p′a(x) =

∑
i x

a
i , and

define pa(y), p′a(y) similarly. Write Θ1/k,(N−1)k : H1/k,(N−1)k → End(C[µji ]) and Θk,N−1 : Hk,N−1 →
End(C[µi]) for the Dunkl embeddings induced by Θ1/k,(N−1)k(xji ) = µji , Θ1/k,(N−1)k(yji ) = Dµji

(1/k),

Θk,N−1(xi) = kxi, and Θk,N−1(yi) = 1
kDµi(k). In this language, we wish to show that

(6.7) Resk ◦Θ1/k,(N−1)k(pa(y)) = Θk,N−1(p′a(y)) ◦ Resk.

Suppose first that the statement held for p2(y). Then, we have for any a that

(6.8) Resk ◦Θ1/k,(N−1)k(adap2(y)pa(x)) = Θk,(N−1)(adap′2(y)p
′
a(x)) ◦ Resk

Recall that for h = 1
2

∑
i,j(xi,jyi,j + yi,jxi,j) and h′ = 1

2

∑
i(xiyi + yixi), the triples

(f, e, h) =
(1

2
p2(y),−1

2
p2(x), h

)
and (f ′, e′, h′) =

(1

2
p′2(y),−1

2
p′2(x), h′

)
are copies of sl2 inside H1/k,(N−1)k and Hk,N−1 corresponding to the SL2(C)-actions given by(

a b
c d

)
xi = axi + byi,

(
a b
c d

)
yi = cxi + dyi,

and similar formulas for xji , y
j
i . In particular, pa(x) and p′a(x) are highest weight vectors of weight a for

these representations, so adap2(y)/2pa(x) and adap′2(y)/2p
′
a(x) are the same fixed constant multiple of(

0 1
−1 0

)
pa(x) = pa(y) and

(
0 1
−1 0

)
p′a(x) = p′a(y),

respectively. Combining with (6.8) and canceling common constant factors yields the desired relation (6.7).
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It remains to check the statement for p2(y) directly. Observe that

Resk ◦
∑
j

∂µji
= ∂µi ◦ Resk,

which implies that

(6.9) Resk

∑
j1,j2

∂
µ
j1
i1

− ∂
µ
j2
i2

µj1i1 − µ
j2
i2

f

 = k
∂µi1 − ∂µi2
µi1 − µi2

Resk(f).

For a partition τ with at most k parts, let mτ (µji ) be the monomial symmetric function in µ1
i , . . . , µ

k
i . Then

we see that

Resk

(∑
j

∂2
µji
− 2

k

∑
j1<j2

∂
µ
j1
i
− ∂

µ
j2
i

µj1i − µ
j2
i

)
mτ (µji )


=

∑
j

τj(τj − 1)− 2

k

∑
j1<j2

1

2

(
τj1(τj1 − 1− τj2) + τj2(τj2 − 1− τj1)

) k!µ
|τ |−2
i

=

1

k

∑
i

τi(τi − 1) +
2

k

∑
j1<j2

τj1τj2

 (µji )
−2Resk(µλ(µji ))

=
1

k
|τ |(|τ | − 1)(µji )

−2Resk(mτ (µji ))

=
1

k
∂2
µiResk(mτ (µji )).(6.10)

Combining (6.9) and (6.10), the statement for p2(y) follows by computing

Resk ◦ Lp2
(1/k) = Resk ◦

∑
i,j

∂2
µji
− 2

k

∑
(i1,j1)<(i2,j2)

∂
µ
j1
i1

− ∂
µ
j2
i2

µj1i1 − µ
j2
i2


= Resk ◦

∑
i

∑
j

∂2
µji
− 2

k

∑
j1<j2

∂
µ
j1
i
− ∂

µ
j2
i

µj1i − µ
j2
i

− 2

k

∑
i1 6=i2

∑
j1,j2

∂
µ
j1
i1

− ∂
µ
j2
i2

µj1i1 − µ
j2
i2


=

1

k

∑
i

∂2
µi − 2k

∑
i1 6=i2

∂µi1 − ∂µi2
µi1 − µi2

 ◦ Resk

=
1

k
Lp2

(k) ◦ Resk. �

Remark. Lemma 6.2 may be extracted from [CEE09, Proposition 9.5(ii)] on representations of the rational
Cherednik algebras H1/k(S(N−1)k) and Hk(SN−1). We give a proof to keep the exposition self-contained.
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