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DIFFERENCE EQUATIONS
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ABSTRACT. We modify and give complete proofs for the results of Etingof-Schiffmann-Varchenko in [ESV02]
on traces of intertwiners of untwisted quantum affine algebras in the opposite coproduct and the standard
grading. More precisely, we show that certain normalized generalized traces FV1= -V (29, ..., 2n; A\, w, u, k)
for Uq(g) solve four commuting systems of g-difference equations: the Macdonald-Ruijsenaars, dual Macdonald-
Ruijsenaars, ¢-KZB, and dual ¢-KZB equations. In addition, we show a symmetry property for these renor-
malized trace functions. Our modifications are motivated by their appearance in the recent work [Sunl6].
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1. INTRODUCTION

This work presents complete proofs for modifications of the results of Etingof-Schiffmann-Varchenko in
[ESV02] on traces of intertwiners of untwisted quantum affine algebras. In that work, certain normalized
generalized traces FViVn (21, -+, 2n; A, w, 1, k) for U,(g) were shown to solve four commuting systems of
g-difference equations: the Macdonald-Ruijsenaars, dual Macdonald-Ruijsenaars, ¢-KZB, and dual ¢-KZB
equations. In addition, these renormalized trace functions were shown to satisfy a symmetry property.
These results were generalizations to the quantum affine setting of the prior results [EV00, ES01] of Etingof-
Varchenko and Etingof-Schiffmann for finite-type quantum groups and [Eti94, ES99] of Etingof and Etingof-
Schiffmann for classical affine algebras. The ¢-KZB equations which appear were previously studied by
Felder-Tarasov-Varchenko in [FTV97, FTV99, FV02].

The purpose of the present work is twofold. First, we provide an exposition of the proofs omitted from
[ESV02]. Second, we modify the statements of [ESV02] to use the opposite coproduct and use the standard
grading instead of the principal grading. The second modification in particular allows trigonometric limits
of the results to be easily taken to recover the results of [EV00] for finite-type quantum groups.

These modifications were motivated by the recent work [Sunl6] of the author, where a trace function for
U, (glg) was explicitly computed and related to certain theta hypergeometric integrals appearing in [FV02]
as part of Felder-Varchenko’s solutions to the ¢-KZB heat equation. In [Sunl6], the opposite coproduct to
that of [ESV02] was considered in order to use the bosonization of [Mat94], and the standard grading was
used both to compare with the Felder-Varchenko function and to enable comparison with the trigonometric
limit. While the techniques used in this paper are similar to those sketched in [ESV02], to ensure that the
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appropriate modifications to the corresponding g-difference equations are made, the author has chosen to
write complete proofs for these modified versions.

In the remainder of this introduction, we state our results more precisely and describe the organization
of the paper. For the reader’s convenience, all notations will be redefined in later sections.

1.1. Normalized trace functions for U,(g). Throughout this introduction, we adopt the conventions
for the quantum affine algebra U,(g) from Section 2 and for dynamical notation from Section 4.1. Let
Vi,...,V, be finite dimensional U,(g)-representations, and let M, , be the Verma module with highest
weight p + kAo + ad. By the results of [EFK98], there is a unique universal intertwiner

‘I’Xf;;',};’w (2;1, ceey Zn) : Mu,k,a — MM,-,—I,...,-,—mk,k/l,...,k;”aéi\)vl [zitl]@) R @Vn[«zfl] ® VT’; R Vl*'

In these terms, the universal trace function is defined by
Vi . — ViV A2wd
WYV (2 s N w, s k) = Tr|m, (fbu’lk (21, 20)q* T2 )

Our main object of study will be the following normalized version of the universal trace function, where the
fusion operator J, its collapsed version Q, and the Weyl denominator §, are defined in Sections 4.3, 5.2, and
5.3. We define the normalized trace function for U,(g) by

FVI’W’V” (Zla sy Rng )‘5 W, k) = QV; ((,LL, k) - h(*1~~-*n))71 e QV{‘ ((p’ﬂ k) - h(*l))il

1. =1y Vi, Va .
JVI[:lil]®m®Vn[zfl](zl’ ce Zn A w) TP (21, s zny A w0 — p, k — h)dg( A, w).
1.2. Macdonald-Ruijsenaars and dual Macdonald-Ruijsenaars equations. Our first class of main
results concerns affine analogues of the Macdonald-Ruijsenaars and dual Macdonald-Ruijsenaars equations.
These equations state that certain infinite difference operators are diagonalized on the normalized trace
functions. Let W be an integrable lowest weight U, (g)-module of non-positive integer level ky,, and let

Vi, ..., V, be finite-dimensional U, (g)-modules. Let also R denote the exchange operator defined in Section
4.4. Define the difference operator
Dw(w, k)= Y Trlwrasthw Aol (val(l,zl; (A w) = hE ™) Ry, (1, 25 A,w)>q_2kaT;\,}fwa
veh*,aeC
where Ty):’kwwf()\7w) = f(A — v,w — kw). Define also the dual operator
Dy (w, k) = Z T -t b+ b Ao] (RWV; (1, 25 (1, k) — ACT D) Ry (1, 295, k))q*QwaT;;fW,
veh*,aeC
where Tl’i ’kkw f(pu k) = f(up — v,k — kw). The Macdonald-Ruijsenaars and dual Macdonald-Ruijsenaars

equations state that Dy, and Dy, are diagonalized on the normalized trace functions.

Theorem 6.1 (Macdonald-Ruijsenaars equation). For any integrable lowest weight representation W of
non-positive integer level 7, we have

DW(UJ’ k)FVMH. Vi (Z17 B ) Aa w, /’La k) = XW (q_Qu_de)Fme’V"(217 <. a5 2n; )‘7("]) /J’7 k)a
where xw is the character of W.

Theorem 7.1 (dual Macdonald-Ruijsenaars equation). For any integrable lowest weight representation W
of non-positive integer level ky,, we have

DI\//V(W, k)Fth)V’L (Zh <oy Zn; )\,wa s k) = XW(q72/\72wd)Fth’Vn (Zla <oy Zn;g )‘a W, k)v
where xw is the character of W.

Define the function F:/"*'""’Vl* to be the result of interchanging V; and V,7', ; ; in the definition of FViVa,
We may also deduce from Theorems 6.1 and 7.1 the following symmetry relation.

Theorem 8.1 (Macdonald symmetry identity). The functions F¥1>»"» and GRS satisfy the symmetry
relation
FVioVo (g 2 A w, i, k) = MR (Zny ooy 215 0y Ky Ay w).
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1.3. ¢-KZB and dual ¢-KZB equations. Our second class of main results concerns affine analogues of
the ¢-KZ equations known as the ¢-KZB equations introduced by Felder in [Fel95] and studied by Felder-
Tarasov-Varchenko in [FTV97, FTV99]. These equations state that shifts in the spectral parameters by the
modular parameters are implemented by certain difference operators in (\,w) and (i, k). More precisely,
the ¢-KZB operators and dual ¢-KZB operators are defined by

Kj (Zla R Zn;)\a w, k) = RVJ‘-HV_;’ (Zj+1a qQij; ()‘a UJ) - h((j+2)---n))71 e RVan (va (I%Zﬁ >\a W)ilrj
Ry, v, (27, 215 (A, w) — R G=1) Gy Ryv, (25,2513 (A w) — R(GHD)n)y
—2p+ :L’f S inl
Dj(p) = g, T ey g,

where T'; f(A\,w) = f((/\,w) + h(j)) and

K_;/(Zla R M? k,UJ) = va,pvf (Zj—lv QQWZ]'; (,LL, k) —_ h(*l.“*(j_Q)))_l e RVF,V;* (Zl7 q2ij; /,L’ ]f)_lr*]
Rv; v (2, 203 (k) = RO 07D) - pCUHRD 0y Ry (27, 25415 (i, k) — AU01))

2
“2AY P ALY

Di(\) :=gq g,

J

where 'y f(p, k) = f ((u, k) + h(*j)>. We recall here that R is the exchange operator defined in Section 4.4.

Note that K;(z1,...,2n; A, w, k) and Kjv(zl, ooy Zn; b kyw) are difference operators in (A w) and (u, k)
whose coefficients are linear operators on V' and V* and that D;(u) and DY () are linear operators on V*
and V. The ¢-KZB and dual ¢-KZB equations relate the actions of K; and D; and K ]V and D;-/ on the
normalized trace functions.

Theorem 9.1 (¢-KZB equation). For j =1,...,n, we have

Vi,V 2k )
FYievn (g, 00 ,q7 2,00 2y A w, p, k)

= (Kj(Zla <y R0 Aawak) & Dj(:u“))Fth’Vn(zh cee g Ry 7Zn;>‘7w5,u’7k)'
Theorem 9.2 (dual ¢-KZB equation). For j =1,...,n, we have

Vi, V, 2w .
FVoolm (o0, q™ 25, 000y Zns A w, s, k)

= (D;/()‘) ®K}/(Zl,...’Zn;‘u7k,w))Fvl"“’V"(Z17.,.7Zj7...7zn;>\7w,‘u,7k).

1.4. Organization of the paper. The remainder of the paper is organized as follows. In Section 2, we fix
our conventions for the quantum affine algebra U, (g) and its universal R-matrix. In Section 3, we define and
characterize intertwiners for U,(g). In Section 4, we define fusion and exchange operators in the quantum
affine setting and relate their universal versions to their evaluations in representations. In Section 5, we
define the normalized trace function. In Section 6, we prove the Macdonald-Ruijsenaars equations (Theorem
6.1) by computing difference operators originating as the radial part of certain central elements for U,(g).
In Section 7, we prove the dual Macdonald-Ruijsenaars equations (Theorem 7.1) by computing an Uy, (g)-
intertwiner in two different ways. In Section 8, we use these two equations to prove a symmetry identity
(Theorem 8.1) for renormalized trace functions. In Section 9, we prove the dual ¢-KZB equation (Theorem
9.2) and use the symmetry identity to deduce the ¢-KZB equation (Theorem 9.1).

1.5. Acknowledgments. The author thanks P. Etingof for suggesting the writing of this paper and for
many helpful discussions. Y. S. was partially supported by a NSF Graduate Research Fellowship (NSF
Grant #1122374) and a Junior Fellow award from the Simons Foundation.

2. QUANTUM AFFINE ALGEBRAS AND R-MATRICES

In this section we fix our conventions on the quantum affine algebra U,(g) and its central extension Uy (g).
We recall also Drinfeld’s construction of a central element in a completion of Uy(g).
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2.1. Cartan subalgebras. Let g be a simple Lie algebra, g its affinization, and g the central extension. Let
a;, 1 =1,...,7r be the simple roots, r the rank of g, # the highest root, p = %Za>0 a,and BV =1+ (0, p)
the dual Coxeter number. Let A = (aij)f’jzo be the extended Cartan matrix of g and d; relatively prime
positive integers so that (d;a;;) is symmetric. Let the Cartan and dual Cartan algebras be

h=hHa®CedCd and h* = h* @ CAy @ C5,

with Ag = ¢* and 6 = d*. Take ag := 3 — 0 € H The algebra g admits a non-degenerate invariant form
(=, —) whose restriction to h has non-trivial values given by

(d,d)=0 (c,d) =1 (oviyo;) =2 fori >0
and agrees with the standard non-degenerate form on h. Fix an orthonormal basis {z;} of h under (,).

Define p := p+ hV Aq.

2.2. Quantum affine algebra. Let ¢ be a non-zero complex number with |¢| < 1. The quantum affine
algebra U, (g) is the Hopf algebra generated as an algebra by e;, f;, ¢™"¢ for 0 < i < r with relations

dihi _ o—dih;

- L . e e gl — g dih

[qhz’th] -0 thejq hj _ q(h“ J)ej qh,,qu hj _ q (his '7)fj [ei, £i] = 0ij . _7(]71
1—a;; 1 1—a;; 1

— Qi l1—ai;j—k — Qi 1—ai;—k
(—1)k< ) J) e; el =0 > (-1)’€< . J) FlmmaTk k=0,
k=0 q%i k=0 q%i
where we use the notations [n] = q;:quln, [n]! = [n]---[1], and (Z)q = %. The coproduct of U,(g) is

Ale)=ei@1+q¢" ®e;  Alf)=fiog ™ +10f;  Al") =" @d".
The antipode of Uy, (g) is
S(ei) =—q “"e;  S(fi)) =—fig""  S(¢")=q 7™
and the counit is
ele;) =e(fi) =0 5(qh) =1

In what follows, we will often use the Sweedler notation

Az) = Zx(l) ®z®.
(z)

When the context is clear, we will omit the summation sign, writing A(z) = M @ 2@ to denote an implicit
summation over the pure tensor summands of the coproduct.

Remark. This coproduct is the opposite of the one in [FR92, ESV02] but agrees with those in the bosoniza-
tions of [KQS93, Kon94, Mat94]. Our motivation for using it is to produce results compatible with the
results of [Sunl6], which uses the bosonization and coproduct of [Mat94].

Let the Hopf-subalgebras U, (b..) and U,(b_) of U,(§) be generated by {e;,¢*"} and {f;, ¢*"}, respec-
tively. We centrally extend U,(g) to U,(g) by adding a generator ¢¢ which commutes with ¢ and interacts
with e; and f; via

[¢% e =[g" fil =0fori #0  qeoq'=qe0  q"foa™" =q""fo
and on which the coproduct, antipode, and counit are
Alg) =q'®q" SN =q" e@)=1

For z € C*, define the automorphism D, := Ad(z?%) € Aut(U,(g)). The action of d gives a grading on U,(g).
In [Dri89, Section 5],the square of the antipode is shown to act by conjugation by an explicit Cartan element.

Lemma 2.1 ([Dri89, Section 5]). For any x € U,(g), we have S?(x) = ¢~ 2 xq?”.
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2.3. Universal R-matrix and Drinfeld element for U,(g). Define Q =c®@d+d®c+ ), z; ® z;, and
let ° =c®@d+d®cand Q' = Y. z; ® ;. By the general construction of [Dri89], there is a universal
R-matrix R for U,(g) with
R =q R and Ry € (14 U,(b1)>0@U,(b_) o).
It satisfies
A ()R =RA(z) forz € U,(g) (A@DR=R¥R*® (1oA)R=RVR"™

Lemma 2.2 ([Dri89, Proposition 3.1]). The universal R-matrix satisfies:

(a) (S@R=(1®S HR=R"}
(b) (S® SR =R.

Remark. Note that the sign of Q is reversed from that of [ESV02] because we use the opposite coproduct.
In [Dri89, Section 5|, the Drinfeld element « in a completion of Uy, (g) is defined by
U = Moy ((1 & S)R)
and shown to satisfy the following properties.
Lemma 2.3 ([Dri89, Section 5]). The Drinfeld element w satisfies the following;:

(a) u=! = ma ((1 ® 5—1)73—1)

(b) S{(%) = ux~u’1; - -
(¢) ¢*Pu=ug* and S(u)g=2¥ = q¢=2PS(u) are central in different completions of U, (g);

3. REPRESENTATIONS AND INTERTWINERS FOR U, (g) AND U,(g)

In this section we fix conventions for Verma and evaluation modules for U, (g) and U,(g) and characterize
intertwiners between them, which will be the central object of study of this paper. Throughout the paper,
we work with evaluation representations valued in the ring of Laurent polynomials or formal Laurent series.

3.1. Evaluation modules. If V is a U,(g)-module, for z # 0 we define the U,(g)-module V(z) to be the
vector space V' with action of U,(g) given by

Ty (2)(a) = v (D2 (a)).

In type A, if V is a U, (sl,)-module treated as a U, (sl,)-module via evaluation at 1, then V'(z) is the evaluation
module at z.

If V is a finite-dimensional or highest weight U, (g)-module, define the U, (g)-modules z=2V [z, 271] and
272V((2)) so that generators of U,(g) act in the same way as on V(z) and d acts by z% if V' is finite-
dimensional and by 22 + d if V is highest weight. Notice that both 2=2V[z,27!] and 2=2V((z)) are
infinite-dimensional as vector spaces over C.

3.2. Verma modules. We denote by M, the Verma module for U,(g) with highest weight p + kA and
by v, x € M, ; a canonically chosen highest weight vector. Define the restricted dual of M, , by

M;Y)k = @Mp,k[T + kAy — CL(S]*,

where the action of Uy(g) is given by (u - ¢)(m) := ¢(S(u)m). Define the representation M,  , to coincide
with M), 1 as a U,(g)-representation, but with U,(g)-action given by letting ¢? act by ¢* on v, 5. If a = 0,
we write M, for M, 1. 0. Our convention is chosen to be consistent with the following explicit computation
of the action of the Drinfeld element on M, ;.

Lemma 3.1 ([Dri89, Section 5]). The action of ¢>Pu on M, j, is given by g(#+kAo.ntkAo+2p),

For generic (u, k), the Verma module M, j, o is irreducible. On the other hand, if pp + kAo is dominant
integral, then the singular vectors in M, ;. , may be determined explicitly.
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Proposition 3.2. Suppose p+ kAp is dominant integral. For a reduced decomposition s;, ---s;, of w € W,

nj = 2(#+}€AO+P o )

CER) . Then the vectors

define of = a;,, ad = (s, - 4,,,) (v, ), and

;g ng
oI

Vpk = [nn]' ’ [n”]| Vp,k

are the only singular vectors in M, o

Remark. We give any highest weight U,(g)-module M the structure of a U,(g)-module by imposing that
q% acts by 1 on the highest weight vector. This convention differs from that of [FR92] but is consistent with
our notation for M, ;. above.

3.3. R-matrices and intertwiners between representations. We will use the following intertwin-
ing property of the universal R-matrix on evaluation representations of Uy(g). Let Vi,...,V, be finite-

dimensional U, (g)-representations, and let W be a U, (E)—semisimple U,(g)-representation. Define the tensor
products V and V of evaluation representations by

V=Wl oVlzf] and Vi=Vi((z1) ® - @ Val((2n).
Lemma 3.3. The operator Pyw Ryw gives an intertwiner

PoyRyvw Vil @ @ Vi[ef @ W = W @ Vi((21) @ -+ @ Vi ((2n))-

Proof. Because R € ¢~ (1 +Uq(/b\+)(§>Uq(/b\_)>, Ryw defines a linear map V@ W — V@ W. The composed

map Py, Ryw is then an intertwiner of Ug(g)-representations by the property A%'(z)R = RA(xz) for
xz € Uy(g). O

3.4. Intertwiners of U,(g)-representations. For any U,(g)-module W which is Uy (H)—semisimple, define
the completed tensor product by

M, 1, @W = Home (M) o, W),

I
where the U, (g)-action is given by (u-#)(m) = uV¢(S(u?)m). In these terms, elements of M, j ,@W are
sums Y o, m; @ w; with m;, w; homogeneous and lim;_,, deg(m;) = oco.

A key construction in this paper will be of intertwiners between a Verma module and its completed tensor
product with either a finite-dimensional or integrable module. We begin by characterizing the space of such

intertwiners when the weight is either generic or dominant integral. Denote the highest term of an intertwiner
P Mm,khal - Muz,kz,az ®@ W by

<¢> = <v:;.2,k27¢v;u17kl>'

Proposition 3.4. Let M) j, , and M}, ;i o be Verma modules and W a U,(g)-representation of level k" on
which ¢"# and ¢¢ act diagonally. Suppose that either (1) (u, k) is generic or (2) u + (k — k')A¢ is dominant
integral and WA — p + n;o; + E'Ag] = 0 for all 4 > 0. We have an isomorphism

Homy;, ) (M ka5 M, - a®@W) = WX = i+ k' Ao]
given by ® — (®).
Proof. The space of U,(g)-intertwiners My  , — M,L,k,;cga@W is given by
Hony, (g) (M, My e W) = Homy, ) (Indy ? %C s Home (MY, W)
v, @ (Cae, Home (M0, W))
~ Hom,, ((ka®kM ks W)
~{ve W[/\ —pu+ kAol | Iy g—rrv =0},

~ Hom

where I, x ¢ := {u € Uy(9) | u-v*, , = 0} is the annihilator ideal of the lowest weight vector of M)/, ..
)-

By Proposition 3.2, the U, (E submodule of M, generated by v* , ;. has relations

61- U—M,—k-‘rk/ = O
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so that I,/ is generated by e;". The given condition ensures any element of W[\ — p + k'Ag] yields a
map of U, (g)-modules in both cases (1) and (2). Computing the action of ¢¢ on the source and target and
recalling our convention that ¢¢ acts by ¢® on the highest-weight vector shows that a valid v must lie in the
degree 0 part of W, completing the proof. O

Remark. In what follows, we will apply Proposition 3.4 for representations W which are either integrable
modules or tensor products of evaluation modules associated to finite-dimensional U, (g)-modules.

-~

For a U,(h)-semisimple representation V' of level &’ which is either highest weight or finite-dimensional,
v € V7], and (u, k) so that the conditions of Proposition 3.4 hold, denote by

O a(2) : My = My rp i a®V[z,27 "]

the unique corresponding U, (g)-intertwiner. FEach z-coefficient of @}, ,(2) lies in the tensor product

-~

M, 7w ,o ®V without completion. Similarly, if W is a Ug(h)-semisimple U,(g)-representation of level
kw, and w € W[r + kwAg], denote by

ikt Muga = My—rk—ky,a @W

the corresponding intertwiner given by Proposition 3.4. For notational convenience, we will sometimes
denote this by @/, (1) := @)} . Fori = 1,...,n, let V; be a U,(g)-representation of level k] which is
either finite-dimensional or a highest weight Uy (g)-representation. For v; € Vi[r; + k, Ao, define the iterated
intertwiner

(I)Zt];;(;vn (217 ey Zn) . Mu,k,a — Mp,ffrlfmf’rn,krfk’17~~~fk£l,a®‘/1 [Zitl]&ﬁ e @)Vn[zrfl]
by the composition
(3.1) i (21ye s 2n) = ‘I)Zl—q-z—-<-—rﬂ,,k—k;—-~—k;’,a(Zl) oo @ (2n),

where we adopt the convention that z; = 1 and Vi[ziﬂ] =V, if V; is a highest weight U, (g)-representation.
If all V; are finite-dimensional, define also the universal intertwiner

(3.2) O (2 ) = Y Rz, 2) QU ® - ® 0,
V1,eenyUn
where in the sum {v;} and {v}} range over dual bases of Vi,...,V,, and V{*,...,V*. Finally, denote the
single-step intertwiner associated to v ® -+ @ v, € Vi[2£'] @ - -- @ V,,[2;F1] by Proposition 3.4 by
(33) @Ztga(gvn (21, ey Zn) : Mu,k,a — M,uf'rlf---f'rn,kfki7~~-7k;/,a®vl [Zitl] R -V, [Z:l],

with the same convention that z; = 1 and Vi[ziﬂ} = V; if V; is a highest weight Uq(ﬁ)—module. If all V; are
finite-dimensional, let its universal version be

ZVi,..,Vy X - QUp,
(34) (I)u,l/;,a’ (Zl""’zn) = Z @Ztga o (21,...,Zn)®1):®"'®’0;
Vly.eeyUn
Notice that @} , () = &)Zka(z) and @,‘zk}a(z) = &)xka(z) As maps of Uq(ﬁ)—niodules, these intertwin-
ers are independent of a; we denote by @ZT,’;"’”" (21,5 2n), @Xj,;""‘/"(zl, ey Zn)s @Zf,;""”" (21,..-,2n), and
<I>L/1,;”"V" (#1,...,2n) the corresponding intertwiners with a = 0.

U1,y Un

Remark. As defined, the composed intertwiners & o
shown in [EFK98, FR92] that the matrix elements of these formal series converge for z; > -+ > 2, and
admit extension to meromorphic functions.

(#1,...,2n) are formal series in z1,...,z,. It was

Remark. For finite-dimensional V7, ..., V,,, the intertwiners <I>Z1 2" (21, ..., 2n) appeared in [EFK98, FR92]
with Weyl modules in the place of Verma modules. The two constructions coincide for generic weight.

4. FUSION AND EXCHANGE OPERATORS AND ABRR EQUATION

In this section, we introduce the fusion and exchange operators as operators on representations via inter-
twiners and as universal elements via the ABRR equation. After characterizing their basic properties, we
give normalizations of the parameters for which evaluation of the universal operators in tensor products of
representations coincides with the construction via intertwining operators.
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4.1. Dynamical notation. Throughout the following sections, we will use dynamical notation to express
the action of certain operators on tensor products of U,(g)-modules. Suppose that f(u,k) : 6* — Uy(g) is
a function and Vi ® --- V,, @ Wi @ W}, a tensor product of U,(g)-representations. We denote by f((u, k) +
ah9) + bh*1) the element of End(V; @ ---V,, ® W} ® W}%) acting by

(s k) +ahD +0hN) (0, @ - @ v, QWi @ - @ws,) == f((1, k) + ap; + b)) (01 @ - - v, QW @ - - Dw,)

for v; € Vj[p;] and w; € W} [y], where we use (u, k) to denote the element p + kAo € b If Ki, v € b*,
we will also denote this by the notation f(u 4 ah) + b)) k). We denote by f((u, k) + ah'¥)) the element
which acts by

Fr(( k) + ah@) (01 ® - @ vy @ wi @ - @ wp,) = fr(( k) + apy + ar) (01 @+ @ v, @i @ -~ B wy,),
where f; is the part of f which shifts the weight in V; by 7.

4.2. Fusion and exchange operators in representations. Let V; and V2 be U,(g)-representations of
level k1 and ko which are either finite-dimensional or highest weight U, (g)-representations. As before, if V;
is a highest weight U, (g)-representation, let z; = 1 and interpret V;[z"'] = Vi. Suppose also that at most
one of V; is highest weight. The fusion operator Jy, v, (21, 22; 1, k) : Vi[zi] @ Va[25?] — Vi[zit!] @ Va5
is defined by

vy, vy (21, 223 ps k) (01 @ v2) 1= <q)zl,;€v2 (21, 22)’0/‘”@’ U?ﬂyk)*Wt(v2)*Wt(v1)>

on homogeneous v; ® v9 € V1 ® Vo, where vi*u k)— is the dual vector to the highest weight vector

wt(ve)—wt(v1)
V(g k) —wt (vz) —wt (1) FOT My k) —wt(vs) —wt(vr)» and wt(v;) denotes the 6*—weight of v;. As defined, it is a formal
series in 21 /22, and it was shown in [EFK98] that it converges to a meromorphic function on z; > 29 if V}
and V5 are finite-dimensional.

For U,(g) representations V; of level k; which are either finite-dimensional or highest weight with at most
one highest weight, define the iterated fusion operator by

JVl,»--,Vn (217 sy Zns k) (Ul @ Q® Un) = <(I)Zlv;€77jn (Zla ceey Zn)vlhk? Uzju,k)—wt(v1)—"~—wt(vn)>.

Define also its multicomponent version by

JV17~~»7V7‘,§V1',+17---,V71, (Zlv vy Riy Ridly - e ey R0 My k)(vl RUa®- & Un)
[ HU1®®u; AFUi+1Q - Qun ¢ *
= < (k) 3wt (1) — ot () (P15 Z0) @G (Zit1se o5 20) ks “(mk)—wt(vl)—---—wt(w)>’

where we note that jvl;vz (215 225 b, k) = Jvy v, (21, 225 1, k). We may relate the two types of intertwiners via
the multicomponent fusion operator.

Lemma 4.1. For homogeneous vectors vy, ..., v,, we have that

=Jvy,..., n . L R Qun ey Un,

@Mf/,; v (210 2t k) (01 v )(zl7 zn):(I)ZlJC (21, Zn)-
Proof. The two intertwiners both have highest term

Jviov (Z1s s zn i k) (11 @ - @ vy),
hence they coincide by Proposition 3.4. ]
Lemma 4.2. The iterated fusion operator satisfies
JV1,<-~7Vn (Zla ceey Rns My k)
= Jvivew-oV, (21522, - -+ 205 1K) o vae-ov,, (225 23, - - o 205 1K) - T,y ov,, (Bt 205 1, K-

Proof. These are two different ways of expressing the highest term of the intertwiner @Zf,;' U (2, 2n),
hence they are equal. O

Let V1, Va be U, (g)-representations which are either finite-dimensional or highest weight U, (g)-representations,
with at most one being highest weight. The exchange operator Ry, v, (21, 22; i, k) : Vi[zi'] @ Va[z5F!] —
Vi((21)) @ Va((25 1)) is defined as

RV1V2 (217 225 [y k) = JV1V2 (217 225 [y k)_lR%/llV2 J\%}Vg (227 215 Ky k)



TRACES OF INTERTWINERS FOR QUANTUM AFFINE ALGEBRAS AND DIFFERENCE EQUATIONS 9

Remark. Both the fusion and exchange operators depend only on the U, (g)-structure of the Verma module
M, k.o, meaning that their definition is independent of the choice of normalization for the grading. Therefore,

. . Py ul ..... Vn

their value remains the same if M), j, (I)u 2 (21,00, 2n), and <I> (z1,...,2n) are replaced by M, k. q,
Vl,..yUn Vly.eeyUn 3 3

@ (=1, 2n), and <I>” b (21,0, 2n) in their deﬁnltlons.

4.3. Universal fusion operators. In [ES01], a universal fusion operator J(u, k) living in a completion of
U, (ﬁ)@Uq (g) under the principal grading is defined; when evaluated in finite dimensional representations,
J (s, k) yields the previously defined fusion operators. We modify this definition by using the ABRR equation
for the opposite coproduct and using the standard grading instead of the principal grading. For this, we
define the coefficient ring

A= C[[qﬂ(u,al)’ g mer) q72k+2(u,9)]]

and work formally over A, .. We then have the following analogue of [ES01, Theorem 8.1].

Proposition 4.3. There exists a unique element J(u, k) € 1 + (Uq(6,)<0<§§>Uq(6+)>0)6 ® Ay i satisfying
the ABRR equation

(4.1) REG! AT (. k) = T (. k)" g,
Moreover, the universal fusion operator J(u, k) satisfies
(4.2) T2 (1, ) T2 (s k) — 0 [2) = TV, k)T (1. ) + bV /2),

Proof. Write J (p, k) = 32, i~ Jij(11)q~ ", where 7 j (1) consists of terms with degree —j in the first tensor
component with respect to the standard grading, and write R = leo R, where R; consists of terms of
degree [ in the first tensor factor and Rg = Rrig. The ABRR equation (4.1) may be rewritten as

ZRZ 161%“71 ) 2qu —2k(i+7) Z t7z,] —2ki.
i,,0
Matching degree j coefficients of ¢~2*, the ABRR equation is equlvalent to
min{s,j}
-2
‘Zvj(u) = Z Rgla q1 «72 a a( )ql Nqﬂ
a=0
For 57 = 0, this yields
Tio(n) = Rt Tio(war "',
which is the ABRR equation for U,(g). By the existence and uniqueness of solutions to the ABRR equation
for U,(g) given by [ABRRI8, Proposition 1], we find that Joo(p) = Fiig(p) and Jio(u) = 0 for i > 0.
For j > 0, we have a recursion relation expressing J; ;(¢t) in terms of elements with smaller ¢ or j, yielding
existence and uniqueness.
To show (4.2), define the operators

ApX = R#*R3! 2“Xq_Q“ qu““’
ApX = R32R31 2qu2u ngqﬂgg-

First, we claim that Ay and Az commute. This is equivalent to the identity
R21R31 2u+2de32R31 —2u—2kd _ R32R31 _2“_2kd7€217231 2u+2kd

2p+2kd —2pu— de

which follows from the Yang-Baxter equation after canceling R3! and the factors of ¢; and g5

Now, we claim that both sides are solutions to A, X = X and AgX = X which agree in degree 0 terms
under the principal grading in the first and third components. Because such solutions are unique, they must
be equal. Notice first that

AL ()T (s ) + B /2) = REIAAG )T (0, 1) T2 (. ) + RO /2)g2
_ j1’23(/17 k)q7Q1’23J23((N; k) + h(l)/2)q91=23
= T (1, k)T (k) + bV /2).

Because Ay and Ar commute, X = ApJ "2 (1, k) T?*((, k) + h(M) /2) satisfies A X = X, so to check that
X = T8, k)T ((u, k) + (M /2), it suffices to note that the degree zero term of the first component of
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TV (1, ) T3 ((u, k) + A /2) under the principal grading is J23((u, k) + h1)/2), the degree zero term of
the first component of X under the principal grading is

R32q_Q31q52u—2kdj23(( k‘) + h(l)/2) 2u+2kdq§213 Qoz RQSAd( —2p—2kd— jxe ))j23(( )+ h(l)/2) Qa3
4*7223}Xd( 2y+2kd+h(>);7 3((Nakﬂ Jrh(l /2)q9237

and that they are equal by the ABRR equation. The computation for J'23(u, k)T ((u, k) — b /2) is
similar. O

We require also a renormalization of J (u, k) which will have good convergence properties when evaluated
on U,(g)-representations which are locally nilpotent with respect to the induced U,(g)-action. Define the

renormalized universal fusion operator L(u, k) € 1+ (U, (b_ )<0®U, ([1+)>0)h ® Ak by
Lp k) = (R*Y) 71T (u, ).
This renormalized operator satisfies the following formal properties.

Proposition 4.4. The following hold for £(u, k):
(a) the element L(u, k) satisfies the ABRR, equation

q%p+2de21£(u7 k) — ‘C(Mu k)q%u+2kdq—ﬂ7

)

(b) each coefficient of L£(u, k) as a power series in ¢~2* has finite degree in the standard grading;
(c) the element L£(u, k) satisfies the shifted 2-cocycle relation

)

(4.4 L2 (1, k)L (1, k) = B /2) = L1 (0, k) L2 (k) + B /2).
Proof. Claim (a) follows directly from the ABRR equation (4.1) for J(u, k). For (b), let the power series
expansion of L(u, k) be

k)= > Lij(pqg ",

4,520

(4.3

where £; ; has terms of degree —j in the first tensor factor, and write a series expansion
R=Y R,
1>0

where R; consists of terms of degree [ in the first tensor factor and Ry = Ririg, the universal R-matrix of
U,(g). The (renormalized) ABRR equation (4.3) yields

— — kd —2u—2kd _—2ki
Z E,g 2k1 Q _ Z q%M+2 Rflﬂi,j(u)ql 2u—2 q 2ki
4,j>0 i,5,0>0
2 —2u  —2k(itj
_ Z C]1MR121£i,j(M)Q1 g 2k(it+j+1)
1,5,0>0

This implies that the constant term Lo(u) satisfies
Lo(p)q™ = ¢ R Lo(p)ar "

trig

and is therefore equal to (R trlg) ! Tivig (1), the analogous quantity for U, (g). For the higher terms, matching

coefficients yields
-Q 2 -2
S Liswa =Y "R Laj(waer
i>0 at+j+i=i

and therefore that
S Lijwa =GR Lo = Y @R La ()

7>0 a+j+l=1i
a<i

Induction on the power of g=2*

that

yields (b). For (c), the 2-cocycle relation (4.2) for the fusion operator implies

T3, KYRPLY (k) = B /2) = T8 (1, k)R L (1, k) + 1D /2).
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Noting the relations J123(u, k)R?*! = R¥ T3 (u, k) and J123(u, k)R3? = R*2 T 132 (u, k) transforms this

into
RARMHLED (k)L (k) — b /2) = RPZIRIZT N2 (0, 1) L2 (1, k) + BV /2).
The result follows from noting that R?'R32! = R32:1R32 by the Yang-Baxter equation. O

Remark. A consequence of Proposition 4.4(b) is that £(u, k) may be evaluated on the tensor product of
any two representations which are locally nilpotent with respect to the action of U,(g).

Define the shifted universal fusion operators
3 k) =T (k) = D /2= 0@ /2)  and  Liuk) = £((0 k) — hD /2~ O /2).

For finite-dimensional U, (g)-representations Vi,...,V,,, consider the corresponding evaluation representa-
tions

V=Wl e 0 Va2 and  Vi=Vi((z1) ® - & Vy((2n)).
If W is a highest weight U, (g)-representation, then evaluation of J(u, k) gives linear maps V@ W — V@ W
and W@V — W®V, which we denote by Jyw (21, ..., 2n; 151, k) and Jwv (1521, . . ., 2n; 4, k). Evaluation of
L(u, k) gives linear maps VW — VW and W@V — WV, which we denote by Ly w (21, .- ., zn; 1; p, k)
and Ly v (1521, ..., 2n; 4, k).
4.4. Universal exchange operators. Define the universal exchange operator in U, (g)&U,(g) by
(4.5) R(p, k) := J(p, k) " RV (1, k)
In terms of the renormalized universal fusion operator, we have

(4.6) R(p, k) = L(u, k)ilRL’m(uv k).

Evaluation of R(u, k) gives linear maps V@ W — VoWand WaV - We 177 which we denote by
Ryw (21,5205 13, k) and Ry (121, .. 205 1, o).

Proposition 4.5. The universal exchange operator satisfies the quantum dynamical Yang-Baxter equation
R (y1, k)R (1, k) — A )R'2(s1, k) = R'2((p1, k) — hO)RY (1, k)R (1, k) — hD).
Proof. By Proposition 4.3, we obtain that
T8 ((u, k) — B®)™L = J32 (g0, k)~ L032 (p, )12, k)
T (s k) = B2y = T2 (1, )12 g1, )32, ).
Substituting these relations into the definition of the universal exchange operator, we find that

R (, k)R (1, k) — )R (11, k)

= I3 (p, k)T VREIP2 (p, k)T (k) — ]1(2))—17331‘1]]31((M7 k) — h(z))Ju('u7 k)Y REI2 (1, k)
= I3 (p, k)" IRIZIV32 (1, k) LI (0, kYRBLIBL2 (k) LIB12 (k)Y RET? (u, k)

= I3 (p, k)10 (k) TIRBZRBVRLTS (1, k) I (1, )

= I3 (p, k) "1V (k) TIRAIRBIRI2IB2 (k) I (u, k).

On the other hand, using the relations
JlQ((M7 k‘) _ h(3))—1 — JQS(,U/v k)_1J1’23</1,, k)—lu]]12,3('u7 k‘)
T (s k) = B) = T203 (a, k) T2 (o, ) (1 B)
J23((,U17 k,) _ h(l))—l — ng(u, k)—1J2,31<M7 k)—lq]]Q?),l('u/7 k)
J2((n k) = BOY) = I3 (, k)~ 02 (s, k) IP (, )
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from Proposition 4.3, we obtain
R ((u, k) = h)RY (1, k)R (1, k) — b))
= 12 ((n, k) = RO TIRHT (k) — ROV (1, k) T R (1, )T (o, k) = BO) I RIZI (s, k) — D)
— J23(//47 k)—1J1,23 (,LL, k)—lJlQ,?) (/,L, k)R21J21’3(/,L7 k)—l
T2, YR (1, k)M I, )R g, )~ P2 g1, k)T (1, )
— J23(//47 k)—lJl,QE} (,LL, k)—lRQIRZ’)lRSQJS,Ql (/,L, k)JQl (,LL7 k),
which yields the desired. O

4.5. Evaluation of universal fusion operators. Let Vi,...,V, be U,(g)-representations which are either
finite-dimensional or highest weight U, (g)-representations. Let z; be a variable if V; is finite-dimensional or 1
otherwise, and let V;[2:'] be an evaluation representation of U, (g) if V; is finite-dimensional or V; itself oth-

erwise. We now relate the multicomponent fusion operators Jv, .. vi;vi,1,..vi, (21, -+ 5 2} Zig1s - - - Zni 1, k) tO
the shifted universal fusion operator J(p+p, k+h") evaluated in a representation. Define the representations
Wi =Vilzr'l@-- eVl and  Wh=Viu[g] e @Vl

and denote by Jw,w, (21, - - -, 2} Zit1y - - - » 2ni b+ p, k + hY) the evaluation of J(u, k) on Wi @ Ws.
Proposition 4.6. Suppose that at most one V; is a highest weight U, (g)-representation. We have that

. . vy — T, . .
JW1W2(217'"7Ziazi+17"'72n7u+p7k+h )_Jvl,‘..,‘/i;‘/i+1,...,vn(zl7’-‘7Zi7zi+17"‘7znvuﬂk)'

Proof. By Lemmas 2.3 and 3.1, the element C' = e2Pu is central and satisfies C|yy, , = gATFA0ATRA+29) g,
Consider a series expansion
i

so that u = ZZ S(b;)a;. Choose homogeneous vectors w; € Wi and we € Wo, and define the quantity

@n L= <”E‘u7k>7wt<w1)7wt<w2>v D k) wwn) (P10 -5 20) QUM ) © Pk (Zirs o Z”)”“*’“>’
where wt(w;) denotes the weight of w;. We compute L in two different ways. First, computing the action of
C on M, 1., we find for weight vectors v € V and w € W that

I = q(/l.-‘rk)A() —wt(wa),p+kAo—wt(w2)+2p)

<%,k>7wt<w1>7wt(wz)’ Bt )ty (215 21) © €7 lwy 0 B (2, »Zn)q_2ﬁ”uvk>
_ Aot wa) kg —wt(1wa) +27)2(+ko ) 27
J~V1,<..7Vi;%+1,...,vn (Z15 ey 205 Zig 1y - - oy Zns o k) (W1 @ W2)
o =t (wa) g —wt(wa) 2wt w2).7) 271
jV17~~~7W§%+17---1Vn, (Z1y vy 205 Zik 1y - o o5 20 4, K) (W1 ® w2).
For the second way, we have
As(S(R)) = (1@ S®S)AHR) = (1® S @ S)(R¥PR'?),
which implies that

> ai @ Sbi)a) @ Sbi)) = Y _ aia; @ S(bi) @ S(by).
[ 7,7

We conclude that

L= 3 (0 -witi) vt Pty (2102 72) © S(bi)as © B (i, 2 )k

= <v€u,k)_wt<w1>_m<w2>, (S(0:) @ S(b)) © VB 1)y (21, 20) 0 @it 0 B3 (23, zn)vu7k>.
%]
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Recall now that R € ¢~ (1 + Uy (b1 )>0®U,(b_)<0), meaning that all i-indexed terms aside from the ones
corresponding to ¢~ are zero in the sum. This implies that

L= ZS \W1<U(,uc —wt(w1)—wt(v2)

((m31 @ 1)(A1 ® S)(q~ ))@2’3 ) Wt(w)(zl7 . ,zi)ajiﬁffk(zwl, cey zn)vu,k>

(,LL wt(wr) —wt(ws))? Z M wt(wi)—wt(wz) )‘Wl
<”Eku,k)—wt(w1)—wt<w2>’ C iy —wi(uwn) (215 2045 B (21, - Zn)v#,k>7

where we note that
(m31®1)o ((A ® S)q*9> _ qlz,. rci+2cdqQ.
Observe now that
SUAR) = SRR = a0 0 50500 = (S 12 0, 050,) (Lo 15 50),
i,J r

which we may rearrange to obtain

1
Zaz@u@s - (Z1®aj®5( )) S3(A1(R))).
This implies that
Z(S(b])q# wh(wa)—wt( wQ))\W1<U(M k) —wb(wy)—wh(ws)> D, k) — Wt(wZ)(zla-~-azi)ajq)izk(zi-i-lw-~72n)vu,k>
J
- (X5t ) X5t
Wi 1
J
<”Tu,k>—wt(w1>—wt(wz)’ B )y (P15 s 2B (i 20) 00k )

—1
= (Do sy @ag) g e

J

<Uz</t,k)—wt(w1)—wt(w2)’ Qi —wiwa) (21 -5 2085 (it - Zn)vu,k>

:(ZS(bj)@)aj) q?;{fl Wt(ml)_Wt(wQ)jvl ..... VisViitsoo Vi (Z1s - oy 203 Zige1s - -5 Zns s ) (w1 @ w2),
J

where in the second equality we notice that all terms in the sum over j aside from those of ¢~ vanish. Now
by Lemma 2.2 we have that

S2(R) = g5 "R g3’
meaning that
—1
(Z S5(b;) @ aj) = 4wy R w, i, -
J
We conclude that

2p+2p—wt(wi) —wt(wsz)

L = grwiw)—wi(wa)? 2Pt 2

JV17~--7‘/7',§Vi+17---7Vn, (Zl7 BN R R P2 Rl ) k)(wl & w2)'
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Combined with our previous expression, we find that

21 2p+2p—wt(w1)—wt(ws) 7 . .
R, w, G, TVt VisVisn s Vi (215 oy 205 Zig1s -+ <5 20 0, ) (01 @ W)
_ (,u+k/\o—Wt(wQ),,u—‘—cho—wt(wg))—2(Wt(w;_>),ﬁ)—(,u—wt(wg)—wt(u}l))2 20 2p
=4q Qw, Q.
1 2
TVi o VisVisr s Vi (215 oy 205 Zig1s -+ -5 20 0, ) (W01 @ W)
_ T . . 2p+2p—wt(w1)—wt(wz) —Q
= Jvh...,vb-;vb-ﬂ,.iwvn(21, sy By Rl e o5 20 k‘)qu q (wl & w2)-

This coincides with the evaluation of the ABRR equation
Rifwa a2 O R (g ke BY) = T+ p, ke R gyt P e ) gm0

for J(p+ p,k+ hY) in Wi @ Ws. Since the solution of the ABRR equation in End(W; ® W3) is unique, we
conclude the desired equality

le,---,ViM+1,-..J/n(Zla S 2 Zid Ly s Zni i k) = T W (R0 28 Zidds e Zns b+ py K RY). O
Corollary 4.7. We have that
Jvi v (Z1, o Zns i, k)
— Jvl[zlil],VQ[zzil]®~~®Vn[z$1](Zl; 295y Zni i+ py ki 4+ RY) - -JV"—I[Zfil]sVn[Z?zzl](Znil; Zni b+ p k+RY).
Proof. This follows by repeatedly applying Proposition 4.6 and Lemma 4.2. (]

4.6. Adjoints of fusion and exchange operators. In what follows, we will often consider adjoints of
fusion and exchange operators evaluated in representations. For vector spaces Wy, ..., W), and an operator

T € End(W;) @ End(W,,,) ® C((22/21, - -+, 2n/2n-1)),
we denote by
T*Wi € End(W)) ® - - @ End(W;) @ - - - End(W,,,) ® C((22/21, - -, 2n/Zn—1))
T*WeWi € End(W) ® -+ @ End(W;) @ - -+ @ End(W}) @ - - - End(Wi,) ® C((21/22, - - - » Zn—1/%n))

the operators with adjoints taken in the corresponding vector spaces. We will use the notation T* :=
T*Wi*Wm for the case where adjoints are taken in all vector spaces. For example, the adjoint of the
iterated fusion operator is denoted by

Jviova(Z1, ooy zns i k)" € End(V) @ -+ - @ End(V,)) @ C((21/22, - - - Zn—1/%n))
and the adjoint in V' of the universal exchange operator evaluated in W ® V' is denoted by

RWV(lv Rlyeeey Ry My k)*v € End(W) ® End(v*) ® C((Zl/ZQv ceey Rng /Zn))

5. NORMALIZED TRACE FUNCTIONS

In this section, we define the trace function for U,(g) and give it a normalization under which it will
satisfy four systems of ¢-difference equations. We note that the parameter shifts in the normalization differ
from those of [ESV02] due to our different choice of coproduct.

5.1. Unnormalized traces. Let Vi,..., V], be finite dimensional U, (g)-representations. For v; € V;[r;],
define the trace function W9 " (zq, ..., 2,3 A\, w, p, k) by

WOt (2, 2 A w, iy k) o= Ty, (@Z{,’c“"”” (21, .-, zn)qQ’\”“’d).
Define the universal trace function WV V(2. ... 2,3\, w, i, k) with values in
PO A ® Arw ® C((21/22, s 21 /7)) @ (Vi @ - @ Vo) [0] @ (Vi @ -+ @ V1) (0]
by the expression

OV Vo (2 2 N w, s, k) = Z WYt (2 2ns A w, i, k) @ (v, @ - @ 07),
v, €V
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where v; and v} range over dual bases of V;. Define also the single-step versions
YOO O (20 A w, k) = Tr|u, (&)Zl),?"'@””(zl, ey zn)q2)‘+2‘*’d)
and
TV V(2 2y A w, i k) = Tr|pm, (5&,;“"‘/"(21, e zn)q2>‘+2‘”d).
The two versions of the universal trace function are related by the adjoint of the iterated fusion operator.
Lemma 5.1. We have that
YoV (o 2z N w, k) = Jvy v (21, Zni k:)*ilvl’“"v" TS WARTN 8
Proof. This is a consequence of Lemma 4.1. O

5.2. Normalization factors. To obtain interesting difference equations on traces, it will be convenient to
introduce the normalization factor

Q. k) = mar (Sa(Lipz. k).

Consider the series expansions

(5.1) R:Zam@bi, R’I:Z@@b;, T, k) = e @di(p, k)

j(/”"k)_l :ch®d;(/~tvk)’ £(Mak)zzei®fi(ﬂ7k)v ‘C(/’L’k)_l :Ze;(@f;(uvk)

Notice that
QUusk) =D S(filwk)es and S(Q(u, k) = 2 S(e)S(fiks k).

Recall by Proposition 4.4 that L(u, k) is a power series in ¢~2¥ whose coefficients have finite degree in

the standard grading, which implies that Q(u, k) may be evaluated in any representation which is locally
nilpotent with respect to the action of Uy(g).

Remark. As noted in [ESV02, Remark 2], the definition of Q(u,k) differs from that used in [EVOO,
ESO01] and is related to the definition of [ESO1] by viewing Q(u, k) as a renormalization of the product
S(u)~'QIFSOU (1, k) which involves divergent sums.

5.3. Weyl denominator. Define the Weyl denominator d,(A,w) by
g\ w) = Tr|M_5(q2>‘+2“’d)71.
In [ES99, Lemma 3.3], an explicit product formula is given for §,(A,w). In our notation, it is given by

(5.2) 5(1()\7(&1) — o(P2x+2wd) H (1— 67(o¢,2)\+2wd))717
a>0

where the product is over positive roots a.
5.4. Combined fusion operator. Define the combined fusion operator by
TV (s k) = IV (k) - TP (k)

and denote its evaluation in V = Vi[2F!] @ --- ® V,,[25!] by JL (21, ..., 2n; 1, k). These combined fusion
operators commute with exchange operators in the following way.

Lemma 5.2. We have that
RO, k)T (k) = RO) = T8y k)R (s, k) — W) - RO (o, k).

Proof. We induct on n. The base case n = 1 is trivial. For the inductive step, consider V,_1 ® V,, as one
representation to obtain by the inductive hypothesis that

RO (g, k)T (s ) = B)
= ROV, )TV (s k) = BO) - IO () — RO (s k) — RO
= I8 (k) - I RO ()R (k) — R RO (BT E(pn, k) — BE).
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Notice now that
RO12 (s, K)I12((1, K) — h(©) = 112 (s, K) T RIZOT20 (s, k)T (1, ) — h(O))

= J012 (k) TIRIZOTI20 (4 k) IO (u, ko)
= 2, k)IO (1, k) — h(z))*l,}]m’z(p, k) "LRIOR20J120 (1 k) J20 (4, k)
= 2, k) IO (1, k) — h(z)) LRIOJI02()y k) =1 J102(y BYR20T20(u, k)
= 712, B)I° (1, ) — AP I RIOT (g, k) — BT (1, k)R (s, ).

We conclude that

RO (1, k)IV ™ (k) = BEO) = T (1, )R (s, k) — R ) - RO (k) — RODRY (k). O

5.5. Normalized trace function. We now put together the normalization factors to define the desired
normalized trace function as

(53) FVI’ s (Zlv RN ) A y W, Wy k) = @V;((M, k) - h(*lm*n))il T Qvf((lu” k) - h(*l))il

J‘l/. L5l @V, [ ](zl, ez A w) TV Ve (e N w = p ke — h)og (A, w).
6. MACDONALD-RUIJSENAARS EQUATIONS
In this section, we prove the Macdonald-Ruijsenaars equations for FVl"“’V"(zl, ce 2 A W, iy k) by ex-

plicitly computing the radial part of an explicit central element in a completion of U,(g). The bulk of this
section is devoted to this computation.

6.1. The statement. Let W be an integrable lowest weight U, (g)-module of non-positive integer level kyy,

and let Vi,...,V, be finite-dimensional U,(g)-modules. Define the difference operator
Dw (w, k) := Z T W 1+ as+kw Ao (val (L 215 (A w) — K ™) Ryry (1, 205 A,w))quk“Tj‘,:’W,
veh*,acC

where T;\kww f(A\w) = f(A—v,w— kw). Let this operator act on functions valued in
(Vilef] @@ Valep1) @ (V; @ @ V).

The Macdonald-Ruijsenaars equations, whose proof occupies the remainder of this section, state that Dyy is
diagonalized on the normalized trace functions.

Theorem 6.1 (Macdonald-Ruijsenaars equation). For any integrable lowest weight representation W of
non-positive integer level 7, we have

DW(w k)FV1 llll V (Zla"'azn;/\awv,ua k) :XW(q72H72kd)FV1 ..... Vn(zlw"vzn;)\vwauﬂk)a
where xw is the character of W.

6.2. Difference equations from radial parts of central elements. The proof of Theorem 6.1 is based
on the computation of radial parts of certain central elements of U,(g). Their existence for quantum affine
algebras was shown in [Eti95]. Let W be an integrable lowest weight U, (g)-representation of non-positive
integer level ky. Consider the element

Cw = (id @ Tr|w)(R¥R)(1 ® ¢~ 7).
It lies in a certain completion of U,(g), and its properties were characterized in [Eti95].

Proposition 6.2 ([Eti95, Theorem 2]). The following is true of the elements Cyy:
(a) Cw is central in (a completion of) Uq,(g);
(b) Cw acts by xw (g 2#=2%4=20) on M,, .

Remark. The action given in Proposition 6.2(b) has a change in sign in the character because our coproduct
and antipode are different from that of [Eti95].

Proposition 6.3 ([Eti95, Theorem 5]). For any W, there is a unique difference operator My, in A so that
Tr‘Mu, (@Vl S ET Zn)C'WqL\H“’d) — MWTY|MM ((I)Vl, (21, Zn)q2>\+2wd>_
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Remark. The result of [Eti95, Theorem 5] does not have a spectral parameter and is stated for a single
evaluation representation, but the statement of Proposition 6.3 follows from the same argument.

Proposition 6.4. The operators My satisfy:
(a) for W, W', we have [My, M| = 0;
(b) we have

./\/lI/V\I/V17 ul (Z], < o5 2n; )‘7(“}7”7 k) = XW(q_ZM_de_Qﬁ){Iv]th,V” (Zla <5 2n; Avwvﬂa k)

To prove Theorem 6.1, we now identify the operators My, and Dy, via the following steps:

compute universal versions of the operators Myy;

express My, in terms of an unknown coefficient G(\, w) by evaluating this universal computation;
characterize G(\, w) as the solution to a coproduct identity;

solve the coproduct identity;

5. conclude the Macdonald-Ruijsenaars equations.

> W

We carry out these steps in the following subsections.

6.3. Computing universal versions of the operators Myy. In this subsection, we express the trace
function

Tr|az, . <<I>V1’ oV (21, zn)C’Wq”‘H“’d)

in terms of the evaluation of a certain universal expression involving fusion matrices. Define the representa-
tions

V=Vi[zf'® - @ V,[z and Vi=Vie- oV
Label tensor factors of the tensor product M, ; @ V@ V* @ U,(g) @ Uy(g) by 0, 1, 1%, 2, and 3 in that order.

Lemma 6.5. The trace function is given by
Tr|u, (<I>V1’ (21 zn)Cqu)‘“wd)

:Tr|W°m23<S3(Tr\Mu, ((Dvh Nz (2, ... zn)’RQO(RO?’) 1 2A+2wd>>q3—2}7)

Proof. By definition the trace function is given by the trace over M, ;, ® W of the composition

22 +2wd o —25 204502 N " (21,00092n)
® R 72 , 1
My@W? =7 MW My,oW " = M, @V(z)@W.
The composition above is given by
HVirVn 20 03 2 2)\ 2wd
7TW’30m23O((b#71k (21,..., )R R p aw ),

so we conclude that
Vi, Vn
Tr|w, (<I>M,1k (215 Zn)CWq2)\+2wd)

= Tr|ar,  Trlw (m23 o (E’Xfi""v"(zh . Zn)RzoRosqg—zﬁquwwd))
= Tr|ar,, , Trlw (m23 ) (‘Evl,;"”v"(zh o zn)R2053((RO3)_1)qg2’3qg>‘+2Wd))
= Tr|w o mas <S3 <T1*|MM (q)vl, Ve (2, ) RPO(RO3) 1 2)\+2wd))q;2§)' 0

We will compute universal versions of the outcome of Lemma 6.5 in two steps. Define the quantities

Zy (215 205 A w, i, k) == Tr[ar, <<I>V1’ (21, Zn)Rzoqude)
Xv(z1,- ooy zns A w, iy k) o= Tra, <<I> L (21, oy 2p)RPO(RO3) T 2)‘+2“’d),

and notice that Xy (z1,..., zn; A\ w, i, k) = Zy (21, .., 2n; (N, w) — B3 /2, 4, k) 4 (Lo.t.). We compute these
quantities in the following two lemmas, whose proofs are deferred to Subsection 6.8.

Lemma 6.6. We have the identity
ZV(Zla <oy Rn; /\a w, W, k) = ‘712(>‘7W)qgkdi}‘/hm’vn (Zl7 <y Rn; ()‘7("}) - h(2)/2a H, k)
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Lemma 6.7. We have the identity
Xy (210 2 A w, 1, k) = g2 7312\ w0) T12((A, w) + h® /2)qg Fdgh
TV Ve (2, 2 (A w) + P /2 — h<2 /2, 11, k) TR (N, w) gy P2
6.4. Evaluating the universal computations. Define the quantity
G\, w) = Q((A,w) = M) TIS(Q, w))g ™"

The goal of this subsection is to evaluate the result of Lemma 6.5 using Lemma 6.7 to obtain the following
expression for the trace function in terms of G(\,w).

Proposition 6.8. We have the identity
(61) Trlag, o (@) (21, 20) Curg? T2

= D Tr[Wirasthw ] (q_%a_%aG(A»w)va(l; 21y 205 A W))
veh*,acC

ACIES Vo2, 2 A — v,w — kw1, k).

Proof. Recall the notations of (5.1) for expansions of R, £(A,w), and their inverses. We rewrite Lemma 6.7
in terms of the renormalized fusion operator as

Xy (21, 2 A wy i, k) = ¢PT2UIRIZ £312(\ )R (A, w) + K3 /2) g5k ghd
AERS V"(zl, vz (A w) + h(3)/2 —h® /2, 1, )ESQ()\,W) LR~ 3_% 2wd,
In coordinates, this means that
Xv(z1y ooy 2y A w, 1, k)
= Y (a0 @bnen @ 0P £ O @)an () + RO /2)g, " @ g2 e1047)

1,7,m,n,r,s

BV (s () A2 = 12,0, k) (16 (O w)al, @ g™ 724).
Therefore, rewriting Lemma 6.5 as

Tr|nr, (&)Vl"n’vn (1,0, Zn)CWQZ/\Jr%d) = Trlw oma3 (Sg(XV(Z1, ey 2y A W k))qiﬂ_2?)>7

sk

we obtain by substitution and cyclic permutation of the trace that
Vi,..,V,
’I‘I‘|MH’ ((I) ! (21, ey Zn)CWq2>\+2wd)

= > a0 wbmen T (0 £ O w)anfa(0) ~ b /2)

1,7,m,n,r,s

EJVI""7%L(21,... Zna()\ UJ) _h(2) " k) 7kdf (/\ w)a/q2A+2wdS(b/)S( ) 7kds(6])s(b )q72)\ 2wd— 2p)

72 Z (1)f(1)AW)b 6\11‘/1’ Ve (217._.72/”;)\—1/’(,0—]{}”/,#,]{3)

v,a 7 ] m,n,r,s
Tl Ao bas) (670 O @)l g 25 (4 S €))
¢ *S(e;)S(bi)g 2020 £ (X wam (A — v/2,0 — kw /2)).

We now evaluate the sum over r, s explicitly in terms of Q(\,w)~*.

Lemma 6.9. We have the sum

Zf )\ w 2)\+2wds<b/)s( ;‘) :Q(()\7W) h(l)) 1 2)\+2wd —E x; —20d



TRACES OF INTERTWINERS FOR QUANTUM AFFINE ALGEBRAS AND DIFFERENCE EQUATIONS 19

Proof. Apply moy 0 S7 to
£()\7 U.)) (R21) 1 72/\ 2wd qu;2A72wd£()‘7 w)—l
to obtain

Zf )\ U.) 2A+2wdS bl Zf )\ w 2)\+2wd —Z x; —2cd

Now, apply m3o1 © Sg to
L2723 W) L2 (A w) —hD/2) LB (N w) + hD /2)71 = £132() w).

The right hand side yields 1, while the left yields

S HE) A w) + RO /2)S(E)S(f5 (A w) = b1 /2))S(ef)ePe;

i,5,0

=Y f((w) + 1M /2)S(e)Q((N,w) — b1 /2).
1
We conclude that
D w)S(e) = QA w) — M)
l

which yields the desired upon substitution. |

From Lemma 6.9, we conclude that
TY'M“, (@Vl’ Vs (Z]_, RN 4 )C q2)‘+2“’d)
—Z Z (1 w)by, e UVirV (21, ey Zns A — VoW — kw, iy k)

v,a i,j,m,n

2
T W (ot oy Ag-tat] (q—QkaQ()\ —w— kw)—1q2)\+2wdq— >, @i —2cd
S(e)S(bi)a™ 22 [ (N w)am fa(A = v/2,0 — ki [2)).
We now simplify the sum over ¢, j. Apply mss o S3 to the identity

224-2wd+25.1512,3 3,12 _ 20 p3,12 22+2wd — Qa3 -0
q3 R“2LY (N w) = q3" L7 (A, w)a3 q T

from Proposition 4.4 to obtain

Za f(l) A w)®S(ej)S( )q—2>\ 2wd—2p (Q)f(2)()\ w)

,J

_ Zq ( (1) )\ UJ ® (]Z +2cdq72)\72wds(ei)q72ﬁfi(2) ()\,(U))

We may substitute this into the previous expression to obtain

Tl ()Y (1 2) g™ 290) = 373 FD (A w)bmen
v,a i,m,n
EIVI .... Vo (2’1, <.y 2n; A— vV,w— kW7 Hy k)Tr|W[V+kon+a5] <q72ka(@()‘ —V,w— kW)71

S(ei)q_Qﬁfi@)()\,w)amfn()\ —v/2,w— kW/2)).
Apply P2 0omjy 05 to the shifted 2-cocycle relation (4.4) rewritten in the form
g5 LY (N w) = g3 PLI N w) L7 (A w) — B /2) L7 (A, w) + b 2) 7
to obtain

Do H W) @ Se)a PR (nw) = D7 F ) (w) —h/2) @ 5(e)S(e)a e f (A w) — bV /2)e]

7,0

=Y f(hw) = h®/2) ® S(ej)a* £ (A w) — hV /2)e]
j,l



20 YI SUN

Substituting this into the previous expression, we obtain

:Z Z PN =1v/2,w — kw [2)bmen UV Ve (2 2 A — vy w — ke, s k)

v,a v,5,m,n
T W [+ Ao +as] (q_%a@@ —v,w—kw) ' S(e;)q (A w)ejam fn (A — /2,0 — kW/Q))
= Z Z [id=v/2,w = kw /2)bmenTrlw btk Ao+as] (q_%a(@()\ —v,w—kw) ' S(e;)g P fi(\w)
v,a i,j,m,n
ertmfn(N—v/2,w — kW/2))\TIV1""7V"(21, ez A —vw — kw, p k)
=35 HO = v/2,0 = kw /2bmenTe Wik Ao as] (q*%a@u —vw— k) LS(Q(\, W)
2P am fuN —v/2,0 — /<:W/2))\TJV1 """ Va2t 2 A — vyw — kyy, i, k)
= Z’I‘I|W[U+k‘on+a5] (q_%a(@()\ —v,w—kw) T S(QN, w)g P Ly (A — v/2,0 — kw /2) 7!

RwvLivA—v/2,w— kw/2))\flvl""’v”(z1, o2 A — v w — kw, p k)

= Z q_2(k+hv)aTr|W[v+kWAo+a6] (G(A, wW)Rwv (1521, ..., 2n; Avw))

v,a
\Ilvl""’v”(zl,...,zn;/\—u,w—kw,u,k). O

6.5. The coproduct identity for G(\,w). The goal of this subsection is to show that G(\,w) satisfies a
coproduct identity, meaning that it is related in a simple way to its coproduct. We first prove an analogous
result for Q(\, w).

Lemma 6.10. We have
AQ\,w)) = ((SR8)L(A, w)+hMV /2413 /2)~1 (Q((/\,w)+h(2))®(@()\,w)>£21(()\,w)+h(1)/2+h(2)/2)‘1.

Proof. Apply (m4s ® ms1) o Sy 0S5 to the shifted 2-cocycle relation
LA3N W) L2 (A w) —h®)/2) = £LY32 (N, W) L32 (N, w) + A1 /2)
from Proposition 4.4(c). From the left hand side, we obtain
(62) > (SUP N w)el” @ 5D w)el ) (F((w) + b0 2+ nP /2) @ ¢;)
)
= A(Q\, W)L (N, w) + 2D /2 + hP) /2).

From the right hand side, we obtain

S S (w) + h@ /2SO0, w) P we; @ SV (0, w) + h@ 2)S(FP P (A, w))es

,J

=Y 5P w) + P 2)S(FP VN W) PP (A w)e; @ SFV (A w) + h@/2))S (£ (A w))es

=S ((vw) + AP /2)e; @ S (0 w) + AP /2)S(fi(hw)es
(]
(63) =Y S (A w) +h®/2)e; ® SV (A w) + ) /2)Q0w),
J
where the first equality follows by coassociativity and the second by the relation mip 051 0 A =noeina
Hopf algebra. Now, applying meo; o So 0 S35 to the cocycle relation, we find for the left hand side

(6.4) STS(Fi((nw) + 1P /2)S(e)eiPe; @ S(fi(Aw) = QA w) +hP)/2) @1

2%}
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and for the right hand side

ZS e)S(FP A w)es @ S5 (0 w) + bV /2) (1D (A, w)
= ((S®S)L((A\w) +hD/2) ST S(FP (A w))e; @ S(FV (A, w)).

Equating (6.4) and (6.5), we obtain
66) D SUT O w)e® S Ow) = (5 © LA @) +hD/2) T QO w) + 1P /2) 1),

Equating (6.2) and (6.3) and substituting (6.6), we conclude that
AQAW)) = (S @ S)L((Aw) +hV 2+ b /2)7!
(QUAw) + 1) @ QO w) ) £21((0,w) + bV 2+ KA /2)71 O
We are now ready to prove the following coproduct identity for G(\,w).
Lemma 6.11. We have
AGOw)) =L (0,w) (G w) & G((Aw) - A ) L2 (A, w) !
Proof. Recall that G(\,w) = QA — A1), w)~1S(Q(\,w))g %, so we have that
AG(Aw)) = AQ(Aw) = hD)7H((S © S)(AZ @A) (g™ © 7).
By Lemma 6.10, we have that
A@((Aw) = K71 = £2(Aw) — AV /2 = 1 /2) (Q((A w) = AV) T @ Q((Aw) — BV = b))
(5 © )L(Aw) —hV/2=h?2)
= L2 (0,w) (QUA @) = AY) T @ QA w) = AV = b)) (S @ S)L(Aw))
and that
(8 @ $)(A2QMw) = (@ )L((\w) - K1 /2= h/2)71)
(S@0w) @ S@((Aw) = KD (82 @ $)L2 (A w) — V2 = B /2)~!
((5 8 LKW ™) (S@Aw) @ SQ((Aw) — KD JLE (A w) 7,
where we use that L21(\,w)~! has weight 0. We conclude that
AG(A W) =L (0,w) (G(A,w) & G((A,w) - KD) )L (A, w) . 0

6.6. Solving the coproduct identity. The goal of this subsection is to prove Lemma 6.15 on the value
of the G(A\,w). Recall that G(\,w) has weight 0 and may be evaluated on any representation which is
locally nilpotent with respect to the U, (g)-action. In particular, letting L,, 5 denote the irreducible integrable
representation of U, (g) with highest weight p14+kAg, we may define the function 7, (X, w) to be the eigenvalue
of G(A\,w) on the highest weight vector of L, ;. Our method proceeds by finding 7, (A, w) and showing
that G(\,w) is determined by it. First, we derive a compatibility relation for 7, (A, w).

Lemma 6.12. For dominant integral weights 111 + k1A¢ and po + k2Ag, the function 7, (A, w) satisfies the
zero-curvature relation

(6.7) Npn ey (A5 )My ey (A — 15,0 = K1) = Ny ey (A W)y ey (A — pi2, 0 — k2).

Proof. By [Lusl0, Theorem 6.2.2], the category of integrable highest-weight representations of U,(g) is
semisimple, meaning in particular that L, 4, k,+k, is the subrepresentation in L, , ® L, k, and L, r, ®
L, , generated by the highest weight vector. Therefore, by Lemma 6.11 and the fact that L2 (\w) €

¢ (1 + U, (’bl)>o<§>Uq (EJF)>0)7 both sides of the desired are equal to 7, 4 pu,k1+k, (A, w), hence equal. O
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We now work with the formal expansion of G(\,w). Let ¢ = e for the formal parameter h, and work
over the ring C[[A]]. From the compatibility relation, we now constrain the formal expansion of

Nk (A w) 1= nu,k(%, %) € C[[A]).

Notice that limp_o7,.5(A\, w) = 1, since limp_,0 G(A,w) = 1. The proof of [EL05, Lemma 7.56] applies
verbatim to the affine setting, hence Lemma 6.12 implies the following lemma, which allows us to constrain
the form of G(\, w).

Lemma 6.13. We may find some function f(\,w) € C][[A]] so that

fO = hp,w — hk)
fAw)

ﬁmk()‘vw) =
as a formal series in A.

Lemma 6.14. As formal series in 7, we have

w fl\w) — R
(%’ﬁ): ( O\ w) )

Proof. By Lemma 6.13, the renormalized element

i X\ w fAw)
GO\ w) ::G(h’ﬁ>f(()\7w) _hh(l))

acts by 1 on the highest weight vector of any highest weight irreducible integrable representation. If @()\, w) #
1, let its formal expansion take the form

GO\ w) =1+ A"g(\w) + O™

for some non-zero g(\,w) € U(g). By Lemma 6.11, we have that

A(l + g\ w) + 0(71"“))

=1 (2, ) (4 g0 w) + O ) (1 4+ Ag(h,w) + O )L (2,4

hence canceling terms, dividing by 2", and looking modulo hU,(g) yields
Ao(g()\,w)) = g()\,W) ®l+1® g(A,w),

where A is the coproduct of U(g) and both sides are considered modulo iU,(g). Let g(\, w) be the class
of g(A\,w) modulo hU,(g); this implies that g(A\,w) € g. On the other hand, g(\,w) has zero weight, so

g(A\,w) € b, which implies that it is 0 since g(\, w) and hence g(\,w) vanishes on all highest weight vectors of

highest weight irreducible integrable representations. This is a contradiction, so G(\,w) = 1, as desired. O
We are finally ready to compute G(\, w) by computing the value of f(\,w).

Lemma 6.15. The value of G(\,w) is

3g(Aw) — M)

B = )

Proof. Tt suffices to check that
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as this formal equality implies the desired equality at o = 1. Applying Proposition 6.8 to V' = C and noting
that Cw acts on M, by xw (q—2r—2kd=20) by Proposition 6.2, we obtain as formal series in A that

Xw (q 27 2R=20) G (5 N, w/ b, p, k)
= > Trlwpsasthwhol (q_%a_zha(@()\/ha w/h)Rwe(l, 2;A/h, w/h)) UC (2 M/ b — v,w/h — kw, p, k)

veh*,aeC
= Y Telwirasennn (472G A /1)) F (2 A~ v,/ b~ 1 )
veh*,aeC
—oka—oha J(A — AV, w — Bkw )\ =
= 5 Tobwrassngan (522 LTS BN G o v~ g ).
veh*,aeC ’

Notice now that
q2(u+kd+ﬁ7>\+wd)

TC(2; N w, i, k) = Tr| g, (¢ = 50 w)
q\ANy

and therefore that

xw (g2 2kd=27) — Z dim Wy + ad + kw Ao]
veh*,aeC

SN —hv,w — hkw) 8q(M/h,w/h) g~ 2R+ -tad+Hew Ao)
f()\vw) 5q()\/h—V7W/h—kw) ’

so equating coefficients of power series in ¢~2*~2k4=20 yields the desired
Fvw)=h0) 5 (%) -n)
fw) 5, (A ﬁ)

h R

O

6.7. The proof of the Macdonald-Ruijsenaars equations. We are now ready to deduce the Macdonald-
Ruijsenaars equations from Proposition 6.8 and Lemma 6.15. Recalling the action of Cy on M, ; from
Proposition 6.2, we find that

o (q 22BN GV Ve (N k) = > q72(k+h)a5q(>\ ng(/;:uw; kw)
veh*,aeC
T W [ 4-as+kw Ao] (va(l; 214y Zn; A,w))@vl """ V"(zl, e 2 A —vw — kw, p, k).
By Lemma 5.2, we have that
Rwv (121,520 A w)
— Jvl[zlil],VQ[z§1}®~-®Vn[z$1](Zl; 29,y 2y A W) - 'JVn_l[zfil],Vn[zil](Z”—l; Zn; A, W)
Ry, (1, 215 (A, w) — h(2'“")) Ry, (1, 205 A w)
(JVI [zlﬂ])VZ[Zzil]@_”@Vn[Z#](21; 29,y Zny A — V,w — k)

-1

.. 'Jvn,l[zfilLVn[Zfl] (Zn-1;2n; A — Vyw — kiw)) .

Multiplying both sides by Jv; .. v, (21, -, 2n; i, k)*, applying Lemma 5.1, and substituting in, we obtain
xw (g7 2R T (2 2 A w) TR (N w) TV Ve (2 2 A w, s K)

= Z q_2(k+h)aTr|W[u+a6+kWA0] (val (1721; (A w) — h(g'””)) Ry, (1, 25 AM))

veh*,aeC
IV ™z, 2 A — W — kw)*léq(/\ —vyw— k) OV Ve (2 2 N — vw — ke, K.
Recalling the definition of the normalized trace FV1Va(zy, ..., z,; A\, w, u, k) now yields

DW(Wv k)Fth’Vﬂ (zla <oy 2ng )\7 Wy My k) = XW(q_2M_2kd)Fth’vn (Zlv sy Zng )\,w, Hs k)
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6.8. Computations for the Macdonald-Ruijsenaars equations. In this subsection we give proofs of
Lemmas 6.6 and 6.7.

Proof of Lemma 6.6. Label the tensor factors of M, , @ V@ V* @ U,(g) @ Uy(g) by 0, 1, 1%, 2, and 3 in that
order. By moving R?° around the trace, we have

. _ GV Vn 202X\ 42wd
ZVI,‘..,VH(Zly-"7Z’n7)\7w7/l7 k) _’I\Il|M}L,k ((Pp,k (217"'7ZW)R 99 )

_ qi”derle (;I;L/lkvn (21, ..., Zn)qg)\+2wdR20)q2—2)\+2wd
_ q%’\+2wdTr|M“,k (RQ(%L/?,;'“’V" (21, Zn)qg)\-i-de) gy 2w
= 2Ty, <(R21)_1&)X}é..7w (z1,- -, Zn)R20q8A+2wd)q272)\72wd
_ q%A+QWd(R21)71ZV1,...,Vn (Zl, s 2 /\’ w, [, k)q2_2)\_2Wd.
where we note that (RQI)_lzlv)Xf,;""V” (215, 20)R? = Rzoai/’l,;'“’v” (21,--.,2n). Denote the claimed expres-

sion for Zv,, . v, (21, zn; A\ w, i, k) by Zy, (215, 203 A, w, i, k). Notice that

A (A IRV P COMRE A WANTN I
= TR TN w)gg MOV Ve (21, 2 (N w) — WP /2, k) gy A2
— qg)\+2wdq%/\+2wdjl2(>\’ w)q1—2)\—2wdq912q2—kdi}V1 ,,,, Vi (Zl, 2 ()\, w) _ h(2)/2’ L, k)q2—2)\—2wd

= T2\, cu)qQ”qQ_kd\T/V1 """ V"(zl, vz (A w) — h(2)/27 i, k)

= Z{/l,.A.,Vn(Zla sy Rng Aawmu’a k)7
where we used the ABRR equation and applied
gl (o (G w) = A2, k) = WYY (s (A w) — P20k,

Notice now that the weight 0 term in tensor factor 2 for Zv, . v, (#1,...,2n; A, w, i, k) is given by

Tr|nr, . (&;/‘;kv (21, zn)q()_zﬂq()_%_%d) =0V (2, 2 (A w) = b2, k) g M

We conclude that both Zv, v, (21,..., 20 A, w, 1, k) and Zy, v (21, ., 205 A, w, i, k) are solutions to

q§>\+2wd(R21)flz — qu)\-‘rde

whose weight 0 term in tensor factor 2 is equal to PV Vo (215 ey 2n; (A w) — h(2)/2, b k)q;kd, hence they
are equal. 0

Proof of Lemma 6.7. By moving (R%)~! around the trace, we obtain

. _ 22 +2wd FVi:Vn 20, 2A+2wd (1503 —1 ) —2X—2wd
XV17~~-,Vn(Zlv"'7Zn7)‘7w7uak) =d3 TrlMu,k, (q)p,,k; (217-'~7ZH)R q0 (R ) )q3
_ 22 +2wd 03\—17V1,...,V, 20 2A42wd ) —2X—2wd
= Ty, (RO TIB) Y (21, 2 RS2 ) g5

_ 22X 42wd 13 Vi Vi 03y —17520 2A+2wd ) —2A—2wd
=43 Tr[n (R 0 (215, 20)(R™) T R qq )Q:s

= g PIRPRP X, v (215 20 A w, p, k) (RPP) gy A2

ok

where we note that

(RO (21, 2) = RIBD) V" (21, 2,) (RO) 7 and (R%) IR = RPR(R%)~H(R?) 7.



TRACES OF INTERTWINERS FOR QUANTUM AFFINE ALGEBRAS AND DIFFERENCE EQUATIONS 25

Now, denote by XV 77777 2 (21, ...y Zn; A, w, i, k) the claimed expression for Xv, . v, (z1,...,2n; A w, 1, k). We
have that

q2/\-‘r2Lz./'d7?,137€23)(‘//17 v, (Zl7 20 )\ W, 1, )(RQS) 1 —QX 2wd
q§A+2wde2 3 2>\+2de3 12()\ w)le(()\ UJ) +h 3)/2) —kd lcd
\I/VI’ Vi (Zl  Zn; ()\’w) + (h(3) . 2))/2 L, k)j32()\, w)71q§2A—2wd(R23)71q3—2)\—2wd

_ q?2))\+2wdj3,12()\ w) 2A+2qu_ﬂl2’3jl2(( ) h(S)/2) —kd kd

43
TV Vo (2, s (N w) + (B3 — h®) /2,0, k)qQ”q;”’MJ”(A,W)‘1Q§2A*2‘”d
= @M 7312 () () T12((X W) + b /2) g5 gk
GV (o (w) + (B — R®Y /2, 1, k) T2 (A, w) gy A2
=Xy, v, (21, 2 A w, k),
where we used that R®R?? = R123 and
g VY (s (N w) 4+ (B = @) 2 k) = BV Ve (2 2 (A w) + (BB = P /2, k).
Therefore, both Xv, v, (21,...,20; A, w, i, k) and X5, 1 (21,. .., 205 A, w, 1, k) are solutions to

q§A+2wdR13R2SZ _ qu)\+2wd7223'

Define the quantities
YV1,...,V7L('Z1)'"azn;Aaw’:uﬂ ) *73 12()\ Cd) ! 72/\ 2de .7V,L(Z17"'azn;)‘aw7/’[/7 k>Q§A+2Wd._732()\7UJ)

Y\; Vo (Zh B R) >‘a W, i, k) = ‘73’12(>‘3 w)71q3_2>‘ QWdXth,Vn (Zla <.y 2n; /\7 W, K, k)qu+2wdj32(>‘7w)

1yeees
so that both Yv,, v, (21,..., 203 A, w, 1, k) and Yy, 1 (21,. .., 205 A, w, i, k) are solutions to

22A+2wd  —Q _ 22 +2wd | — Qs
a3 q 1237 — qu q 32

with weight 0 term in the third tensor factor given by
T2 (0 w) + 7 [2)g5 F gV Vo (21, 2 (A w) + (MY — 1) /2, 1, k)
by Lemma 6.6, yielding the conclusion. O

7. DUAL MACDONALD-RUIJSENAARS EQUATIONS
In this section we prove the dual Macdonald-Ruijsenaars equations for FYVi Ve (2, ... 203\ w, 1, k).
Our method proceeds by showing that two naturally defined intertwiners are related by an application of
a dynamical R-matrix, after which the result follows by computing the trace of a single intertwiner in two
different ways.

7.1. The statement. Let W be an integrable lowest-weight U,(g)-module of level ky,, and define the
difference operator

DY\//V (wv k) = Z Ter[l/+a6+kWA0] (RWV,:: (17 Zn; (M; k) - h(*l*(nil))) T RWVI* (17 215 Ky k)) 72waTkakWa
veh*,aeC
where T“’k f(pu, k) = f(p— v,k — kw). Let this operator act on functions valued in
Ml e eVulml) e (Ve @ V),

where we interpret Ryyv» (1, 2m; 1, k) as the evaluation of the universal fusion matrix on W @ V% [2:E!]. The
dual Macdonald-Ruijsenaars equations state that Dy}, (w, k) are diagonalized on renormalized trace functions.

Theorem 7.1 (dual Macdonald-Ruijsenaars equation). For any integrable lowest weight representation W
of non-positive integer level ky,, we have

DW(w ]C)}:‘V17 oY (Zl7 s 2ng Aawa My k) = XW(q_QA_de)Fth’VTL (Zla <oy Rng )‘7 W, W, k)a

where xw is the character of W.
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7.2. Computing an intertwiner in two different ways. Suppose that (u, k) is generic so that all Verma
modules M) ;, with highest weight given by a shift of z + kA by an integral weight are irreducible. Let W
be a highest weight irreducible integrable module of level ky,. By Proposition 3.4, we have an isomorphism
of U, (g)-modules

n: @W[)\ =+ kwho — ad] @ My (ktkw)hg—as = Muk @ W.
Aa

For finite-dimensional U,(g)-representations Vi,. .., V;,, consider the representations
Vi=WlENe- 0 V2 and  V:=Vi((z1)) @+ @ Viu((2n)).
We abuse notation to also define the vector space
Vi=Ve -V
This isomorphism will provide two natural ways of constructing an intertwiner
My @W = M, @ WV @ V*,
which will be related by the application of a dynamical R-matrix.

Proposition 7.2. For any finite-dimensional U,(g)-representation V, the following diagram commutes.

My oW ff)le/;...,\/"(zh...,zn)‘ Ve e
X
n
@ Wy —p+kwho — ad] @ My kyky,—a
OV (21, ) Py, Rvw
'

@ Wiy —p+kwhAo —ad] ® Mu,k-i—kw,—a@V ®V*
RWV(]-;ZD ceey BV + P, k + kW + h\/)*V
4 Y

P Wy — 1+ kwho — ad] ® My psy —a®V @ V* il - M,y @ WRV @ V*

v,a

Proof. For each choice of (v,a) and w € W[v — pu + kwAp — ad], restricting each branch of the diagram
to W ® My gtky,—a gives two intertwiners My, kiky ,—a = My r ® WeV ® V*, where we note that the top
branch is an intertwiner by Lemma 3.3. To check that these intertwiners are equal, it suffices by Proposition
3.4 to check that they have the same highest term. Suppose that

Ryv (1521, zns v+ ok + kw + 1Y)V = pj@g;,
;

where p; € End(W) and ¢;(z) € End(V*)((21,..., %)), and let {v;} and {v}} be dual bases of V1 ® --- @V,
and V*. Applying Proposition 4.6, the highest term of the top branch is given by

=V1,...,V, w
<PVWRVW(I)#’1]C n(Zl,... 5zn>q)y,k+kw,fa>

= ZPVWRVWJVW(Zh vz v+ p k+ kw4 hY)(v; @ w) @ vf

(7.1) =Y Ry (L2, zniv 4+ p ke + kw + hY)(w @ v;) @]
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On the other hand, the highest term of the top branch is given by

Z <(I)p] (b:jlk:+kw B CCEINEE Z")> D q;v;

.3
= Z«UWV(la Zlyeey2nsV + pak + kW + h’v)RWV(l;z].) <520 Vak + kW)('LU ® ’Ui) ® ’U’Z(
(7.2) —ZR vz, oz v+ pk+ ke + hY) (0w @) @)
Comparing (7.1) and (7.2) yields the desired. O

7.3. Computing the double dual of the dynamical R-matrix. We require also the following compu-
tation of the double dual of the dynamical R-matrix.

k)*W*V

Lemma 7.3. The value of Ry v (1;21,..., 20 4, is given by

Ry (1321, 2 k)™ Y = (@, k) @ Q(, k) + b))

Ryyey (121, -y 2n; (1, k) + B + B2 (@((u, k) +h) 2 Q(u, k)‘l)-

Proof. Recalling that
R(u, k) = L, k)~ RL* (1, ),

we see that
RWV(l;Zla-”,Zn;Ma k)*W*V (S ® S~ )(L21(M’k))|W*®(V;[z$1]®~--®vl*[Zf:l])
(STH@ STHRw-v-) (ST @ STHL(1 k) - (vs oo v [+21])-

Because LL(yu, k) and R are weight zero, we may replace S~! ® S~! with S ® S in the equation above. By
Lemma 6.10, we have that

(S @ S)(L(, k) = (S S)(L((. k) + hV /2 + b /2))
— (@, k) + R @ QU 1)) £((11, k) + BD /2 + AP /2)7 A2 (Q(p, k) 7).
Substituting in, we conclude that
Ryyv (1; 21, - . ., Znsps k)WY

= (Qw+ (1, ) © Qu (2, k) + BD)) Loy (1 F) + 5D /24 5D /2) 7

AL ( QU k) DRy Ay« (Q(p, k))

Loy (0, B) + BV /2 + RO /2) (Qu- (11, k) + h) ™ @ Q- (1 b))
= (Qw+ (1, ) © Qu (1, k) + B D) ) Ropev (121, 20 (1 ) + A + B3)

(@ (1, 1)+ B®) 7 @ Qv (. )Y, O

7.4. Proof of the dual Macdonald-Ruijsenaars identities. We are now ready to prove Theorem 7.1.
If W is a lowest weight integrable module of level ky, then W* is a highest weight integrable module of
level —kyy, for which we may apply Proposition 7.2 to obtain the equality

(73) PVW*RVW* (Alsxk(zl, ey Zn)

=noRw-v(L;21,..., 2050+ p, k — kw + hY)* o ‘T)X,k—kw,—a(zlv oy zn)on !

of intertwiners M, , @ W* — M, ;, ® W*&V @ V*. Consider the trace of both sides of (7.3) precomposed
with ¢?*T29? and postcomposed with ¢*vw=. Computing using the left hand expression of (7.3), we note
that only terms involving the diagonal term of Ry -(z) contribute; since this diagonal term is ¢=?vw*  we
conclude the trace is equal to

(7.4) X+ (@AF2NUY (21, 2 A w, K.
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Computing using the right hand expression of (7.3), we note that the value of the trace has zero weight in

177 hence ¢~?vw* evaluates to 1. Therefore, in computing the trace we may ignore both ¢~*vw* and the
conjugation by 7, obtaining

(75) ZTﬂW*[V*#*kWAo*Ms] (RW*V(l; Z1y.eoyBn3V + P, k—kw + hv)*V)

v,a
q72wa{fjv(zl7 <520 A,W, v, k — kW)
= Tl ey Ag—as] (RW*V(1§ 21, Zni itV p k — kw4 hv)*v)
v,a
q*QW\I'V(zl, 2w, vk — kw).

Recall now that V is a tensor product of evaluation representations. Equating (7.4) and (7.5), multiplying
on the left by Jv, v, (21,...,2n; i, k)*, and applying Lemma 5.1, we find that

XW(q_Q/\_2wd)q]th7vn (217 ceey Zn; )‘u W, W, k)

= v (210 20 1 B) T s (kg Ag—ad] (RW*V(1§ 212t v+ p k= kw £ hv)*v)

q_QW“{Iva(zl, e Zny A w, vk — kw).

Now, by Corollary 4.7, we see that
Tie VG i R)" =Ty, s g vy (o kR Dy g, ity (0 0 R+ R

and therefore by Lemma 5.2 that on W*[v — kw Ay — ad] we have

Tviovi(Z1s s Zn 1 B Ry (L 20, ooy 20 i+ v+ po ke — ke + BY)*Y
=Ryv, (L zni i+ v+ p k= kw +hY )"V oo Ryey, (1, 205 (4 v + p b — by + hY) — B )N
Tvi,ovi (21, sz vk — kw )™

We conclude that

xw (g2 VeV (g 2 A w, k)

= ZT‘rlw*[l/—kon—a(;] (RW*Vn(l7 Zny b +v+ 12 k — kW + hV)*Vn T

v,a
Ryvy (1,215 (0 + v+ p, k —kw +hY) — h(g"'”))*vl)q_QwaJvl,...,vn(Zl’ s 2y vk —kw)”
‘ilv(zh...,zn;)\,w,,u—i— v,k —kw)

= T (ot Ao ad] (RW*Vn(la Zni A v+ pk —kw +hY) T

v,a

RW*Vl(la 21, (p, +v+p, k—kw + h\/) _ h(2,..n))*W**V1>q72wa\I,V1,...,Vn (21’ o )\,UJ,/L n b — kW)
By Lemma 7.3, we see that
Ryvev, (1, 25 (1 + v+ p, k — kyy + BY) — pUF1m) )W Vs
- (QW** (v +pk = kw + 1Y) = BN Que (0 + p, b+ hY) — h(”l“'")))
Ryyeevs (1, 255 (4 p, b+ hY) 4+ b0 — pUFm)

(Que (v + p e = b+ 1Y)+ B = ROEFLD)TIQu (v + p, b — hay + ) = )71,
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Substituting in, noting that A*Y = —h(®) and ('™ = 0, and canceling common terms in W*, we obtain
that

Xw (g A2 W oV (2 2 N w, k)

= Tl ot hw Ao tas] (QW** (n+v+pk—kw+h")Qus(u+p,k+hY) - Qup((u+p, k+hY)—hE)

Rypeevs (1, 25 (1 + p, ke + RY) + h(*n)) o Rypeeye (1, 203 (e + po b+ hY) + D h(2-..n))

Qe (4 v+ pk—kw + 1Y)+ 2D =R NQUL(n+ v+ p, k — kw + 1Y)

QU v ok — ko BY) = B )RV (A vk — ).
Noting that W** ~ W and that we may ignore the conjugation by the Qy««-term in computing the trace,
we may simplify this to

() AC I D WANTY

= ZQVJ«M + p,k + hV) _ h(*1-~~*n)) .. 'QV{((M + pJ{: 4 h\/) _ h(*l))

v,a

Xw

Tr|W[7V+kWA0+a6] (RWV,;‘ (1, Zn; (,u + p, k + hv) + h(*n)) .. 'RWVI* (17 213 (,u +p, k4 hV) + h(*l...*n))>

Qu; (1t v+ p k= kw +hY) = R )" Que (v + ok — kw + BY) = hOD)
g 2wagVieVn (21, zms A\ w, p+ vk — kw).

Substituting in the definition of F', we find the desired

XW(q—Q)\—de)FVl,...,Vn (Z17 D WANTA k) = ZTI.‘W[V+kwAU+G46] (RWV;(L Zn; (M7 k.) 4 h(*n)) -

v,a

Rupvy (1,215 (1, k) + ROT) ) g 290 PV Vo (22X, o= v,k = ).

8. MACDONALD SYMMETRY IDENTITY

In this section we prove the Macdonald symmetry identity for FViVe (21, ... 2z,; A\, w, i, k) under in-
terchange of (A,w) and (p, k). Our method uses the observation that the Macdonald-Ruijsenaars and dual
Macdonald-Ruijsenaars operators Dy (A, w) and Dy, (u, k) are exchanged under this interchange and the fact
that the Macdonald-Ruijsenaars equations admit a unique formal solution.

8.1. The statement. Theorems 6.1 and 7.1 show that FV1 Ve (2, ... 2z,; \,w, i, k) satisfies dual systems

of difference equations. Define the function FY" Y 40 be the result of interchanging V; and V7, ;_; in the

definition of FV1+-V». This section is devoted to proving the following symmetry relation.

Theorem 8.1 (Macdonald symmetry identity). The functions FV1»V» and Flee W satisfy the symmetry
relation

FViorrs Vo (g s Ayw, i, k) = F*VJ,M,V: (Zny -y 215 1 Ky A, W).
Recall the coefficient rings
Arew = Cllg2Men), . g2 e g 2wt2(00)]) and Apr = Cllg2men) . g 2mer) = 2k+2(m0)])

Our strategy will be to show that the Macdonald-Ruijsenaars equations admit unique formal solutions
over Ay, and A, with specified leading term. The fact that FVi»Vn (21, ..., 2,5 A, w, p, k) satisfies these
equations in both sets of variables will then give the conclusion.

8.2. Formal expansion properties of FV1» V(2. . .., 2,: A\, w, i, k). In this subsection, we show that the
renormalized trace functions admit a formal expansion in a certain coefficient ring.

Lemma 8.2. The renormalized trace function F"V1Vn (21, ..., 2,; A\, w, u, k) has formal expansion lying in

POMAL @ Ak @C((22/21, - 2n)2n1)) @ (Vi@ - @ V)0l ® (ViF @ --- @ V)[0).
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Proof. For WVirVa (2 . 2,5 A\, w, i, k), this follows from an argument analogous to that of [Sun16, Propo-
sition 2.6]. Now, the normalization factors lie in

Axnw @ Ak @ C((22/21, -y 2n/2n-1)) @ End((Vi ® --- ® V,,)[0]) ® End((V,y @ - - - @ V{")[0])
by definition, so combining these facts yields the desired. O

8.3. Uniqueness of formal solutions to the Macdonald-Ruijsenaars equations. We now prove a
uniqueness property for formal solutions to the Macdonald-Ruijsenaars equations over Ay ,,.

Lemma 8.3. For each v € (V; ® --- ® V,,)[0], the system of equations
Dy (w, k) F(A,w) = xw (g~ ") F(\ w)
for W ranging over all lowest weight integrable representations has a unique solution F(\,w) valued in
MA@ A ® C((22/215 -+ 20/ 20-1)) @ (Vi @ - @ V) [0]
with leading term ¢*>**)v as a series in Ax -

Proof. Existence follows by taking (v*, FV1»=Va(2y,... 2,; A\, w, i, k)) and applying Lemma 8.2, where v*
is dual to v. For uniqueness, suppose that Fj(\ w) and Fy(\,w) are two such solutions. If F'(\,w) :=
Fi1(A\,w) — F»(\,w) is non-zero, it is another solution which must contain a (possibly non-unique) leading
monomial term of the form

Cq2()\,u)q7 > 2ni()\,ai)q72mw+2m()\,0)vl = (A2p—23%7, niai+2m0)f2mwv/

q
for some n; > 0,m > 0 with at least one n;,m non-zero and v € (V; ® --- ® V,,)[0]. Notice that
qM2em2 2 niaat2mO) =2mwyl wil] again be a leading monomial term of Dy (w,k)F’(\,w) with coefficient
given by
CZdlmW[V + kWAO + a5] q72kaq7(u,2uf2 > niai+2m9)q2mkw _ CXW(q72,u,72kd+2 > niai+2ma0).
v,a

Since 2", n;a; + 2mayg # 0, the fact that this holds for all lowest weight integrable W contradicts the fact
that Dy (w, k)F'(\,w) = xw (g~ 2* =24 F'(\,w). We conclude that F’(\,w) = 0 and the desired solution is
unique. ([l

8.4. Proof of the symmetry identity. We are now ready to prove Theorem 8.1. Notice that the
Macdonald-Ruijsenaars equations for F'Vi+Ve (21, ... 2z,; A\, w, i, k) correspond under variable exchange to

the dual Macdonald-Ruijsenaars equations for FYnVi (Zny- -y 215y k, A,w). By Theorems 6.1 and 7.1,
both FVi V(2 .0 203 A\ w, p, k) and FYno (

Dy (w, k)F(\,w) = xw (g ) F(\w)

Zny .-y 215 by Ky A, w) are solutions to

for all lowest weight integrable W. Now, their leading terms with respect to Ay, are related by an element
M(u, k) e Ay @ End((V,¥ ® - -- ® V1*)[0]), meaning that

(81) FVl’m’V” (Zlv s R )\aw7uv k) = M(N’a k)Fl/;7.II7V1 (va sy B3 My ka Avw)'

Repeating this argument with (u, k), we find that
Fl/;7...,V1* (Zna ceey B3 M ka Aaw) = M/()UW)FVLW’V”(ZM ) )‘a W, i, k)

for some M'(A\,w) € Ay, @ End((V1 ® --- ® V,,)[0]). This implies that M (u, k)M’ (A, w) = 1, hence M (p, k)
lies in End((V,} ® --- ® V{*)[0]). Now, comparing leading terms in Ay, in (8.1) implies that M (pu, k) = 1,
yielding the desired.

9. ¢-KZB AND DUAL ¢-KZB EQUATIONS

In this section we prove the ¢-KZB and dual ¢-KZB equations on behavior of FVi:Vn (215 oy 2y A, w, 1y k)
under shifts of the spectral parameters by the modular parameters ¢~2¢ and ¢~2*. We directly establish the
dual ¢-KZB equations, after which the ¢-KZB equations follow by the symmetry relation of Theorem 8.1.
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9.1. The statements. The ¢-KZB operators are defined by
Kji(z1,. s 205\ w, k) == Ry, v, (2541, q%zj; M\ w)— h((j+2)'”"))71 Ry, v, (2n, qkaj; A, w)lej
Ry, vi (25, 215 (A, w) = h@ 707D - plGFDm)y Ry (25, 25005 (A, w) = REFD )

-2 x2 . . .
D](M) = q*j IH_Z’ 4 qQ*Jv*(J—l) . qﬂ*y*l7
where T'; f(A\,w) = f((/\, w) + h(j)>. The dual ¢-KZB operators are defined by

KJ\'/(ZL ey Zn k7w) = RV;—PVJ* (ijh quZj; (Ma k) _ h(*lw*(j—?)))—l .. .va*’vj* (thszj; 1, k)_ll"*j
Ry v (27,2 (1K) — ROT0070) - pGHD-D) Rypy (2,243 (. k) — BT 0D)

— 2
D}/ (A) = q; 22 7 gt gt

where Ty, f(u, k) = f((,u,k) + h(*j)>. Note that K;(z1,...,2n;\w, k) and K)/(zl,...,zn;u,k,w) are

difference operators in (A, w) and (u,k) whose coefficients are linear operators on V and V* and that
Dj(p) and DY (M) are linear operators on V* and V. It is known that the Kj(21,...,2n;\,w,k) and the

Kjv(zl, cey Zn; by kyw) commute and form the ¢-KZB and dual ¢-KZB integrable systems.

The ¢-KZB equations relate a spectral shift by the modular parameter ¢~2* associated to p to the action

of the difference operator K;(z1,...,2n; A, w,k) in A. Symmetrically, the dual ¢-KZB equations relates
a spectral shift by the modular parameter ¢~2“ associated to A to the action of the difference operator
K (21, 2n; 1, k,w) in g In a different form, they were introduced by Felder in [Fel95] and studied by
Felder-Tarasov-Varchenko in [FTV97, FTV99]. The remainder of this section will be devoted to the proof
of these two equations, stated below. We will prove Theorem 9.2 directly, after which Theorem 9.1 follows
from the symmetry property of Theorem 8.1.

Theorem 9.1 (¢-KZB equation). For j =1,...,n, we have

FVIW"V”(zl,...,q%zj,...,zn;)\,waﬂak)
= (Kj(zl,...,zn;/\,w,k)®Dj(#))FV1 """ U2t 2 A w, s ).
Theorem 9.2 (dual ¢-KZB equation). For j =1,...,n, we have
FVoVo (o o0 g%z, 2 Ay w, s k)
- (ng()\) ®Kg\‘/(z1,...,zn;ﬂ,k,w))Fvl’”"V"(ZL~-~,Zjv"'>Z";)"w’“’k)'

9.2. Commutation relation for intertwiners. The fundamental operation in the proof of Theorem 9.2
is the application of the following commutation relation for intertwiners.

Lemma 9.3. For finite-dimensional U, (g)-representations V' and W, we have the relation
PVWRVW(I)L/:ZV(ZM z2) = Rwv (22, 2150+ p, k + hv)*‘bz[,/}gv(zm 21).

Proof. Both sides of the desired equality are intertwiners M, — W[z @ V[ @ W* @ V*. Let {v;}
and {v;} be bases of V, W, and let {v;}, {vj} be the dual bases. The highest term of the left side is given by

> v @0 ® Tk (21, 251, K) (R )" (0] @ 0f)
i,J
and the highest term of the right hand side is given by
Z”Uj ® v; ® Rwv (22, 2151+ p, k + hY) " Ty (21, 225 1, k) (0 @ 07),
2%

so the result follows by noting that Proposition 4.6 implies these are equal. |
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9.3. Proof of the dual ¢-KZB equation. We are now ready to prove the dual ¢-KZB equation. Rewrite
the conclusion of Lemma 9.3 as

D, 1o (21) © @5 (22) = Ry PywRwv (22, 215 0+ p, b+ 1Y) @ ) (22) 0 @7 4 (21).
Swapping the roles of V and W, we obtain also that

(I’Xt,k)_h(m (21) 0 (I)E,/k(ZQ) =Rvw(z1, 2250+ p,k + hv)i*PVWRWV(I)E;k)—h(V) (22) 0 ‘I);Y,k(zl)-
V;

(k) —hG+1-m)
of the trace to move it to the right, and then apply the commutation relations to commute it back to its

original position in

Apply these commutation relations to commute ® (zj) to the left, apply the cyclic property

\IIVLH.’Vﬂ (217 <.y R0, A7 W, IU/7 k) = r‘[‘r|1\/fu,k ((I)Xi,k)—h@“-") (Zl) e @XTk(Zn)q2A+2Wd)
to obtain

LACEL Y A WA )
=Ry, v, (zj-1,2j; (u+ p,k+hY) - h(Hlmn))_*Pijﬂ/ijjvjﬂ o
Rv,v, (21,255 (+ p,k + 1Y) — h(2"'j*1)+(a‘+1~--n))7*PVJ_V1RV%
g PTG Ry Prv Ry v, (2, zni i+ p b+ 0T Ry
Py, v, Ry,v, 0 (255 240 (o py ke BY) = RUTZ ) @od @V Vo (o oz 20 A w, s k)
=Rv,v,_, 'R‘/}quJQ’\_Q“dR;:% . 'R\_/j1+1\/',-qg2'wd
Ry, v, (51, 25 (i + po ke + BY) — ROF0) = Ry (o, 255 (1 p b+ BY) — A= Lm) )=
DoRyv, (6722, zns o4 p kA 1Y) Rupvy (07225, 2015 (n+ p k4 hY) — 20y

Vi,V —2w .
LS (21,00 @725, o 2 A w, 1, K).

Now, apply Lemma 7.3 and cancel terms to see that

(9.1) Ry, ,v, (221,25 (n+ p, ki +hY) = Ry ==
Rvyv, (21, 255 (1 + py k 4+ hY) — hZd =D+ HLn)y =
LujRv,v, (4722, 2t ok +hY)" Ry, (67225, 25005 (0+ po b+ ) — RUFZ))

— (Q\/j*((M‘FM k+ hV) + h(*(j+1)<..*n))(@vﬁl((M_Fp’ k+ hV) + h(*j...*n)) o QV;((M—FP, k—|—hv) 4 h(*z”'*"))
Qv (u+pk+hY) Qe (1 +pk+hY)+ h<*<j+2>~~*n)))Kjv(21’ it p kR W)
(Quye, (G pok 4 BY) + BT 0 Qg (p+ p b+ BY) + RO2+) 7

Qu; (n+pk+h") 7 Quey (4 py ke + 1Y)+ BETTD ) TIQu (4 p, b+ 1Y) + h<*<j+1)'“*”))_1>.

Finally, we claim that on V[0] ® V*[0], we have

(9.2) Jln(/\’ w)—le,j—l . leqj—Q/\—2wd(an)—l L. (Rj+1,j)—1J1~~n()\7w)q2wd

— _ 2
=g T e = DY ().

Notice that R7I~1... RIL = RILI=1 and (R™)~L... (RITLI)~1 = (RI+1-md)~1  Therefore, to prove
(9.2), it suffices to check it for n = 3 and n = 2. For n = 3, the product of both sides for j = 1,2,3 is 1,
hence it suffices to check for j = 1,3, in which case it reduces to the n = 2 case. For n = 2, (9.2) follows by
rearranging the ABRR equation of Proposition 4.3. Substituting (9.1) and (9.2) into our previous relation
and then applying the normalizations of (5.3) yields the result.
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