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Abstract. We study the attribution problem, that is, the problem of attributing a change in the value of
a characteristic function f to its independent variables. We make three contributions. First, we propose

a formalization of the problem based on a standard cost sharing model. Second, we show that there is
a unique attribution method that satisfies Dummy, Additivity, Conditional Nonnegativity, Affine Scale

Invariance, and Anonymity for all characteristic functions that are the sum of a multilinear function and

an additive function. We term this the Aumann-Shapley-Shubik method. Conversely, we show that such a
uniqueness result does not hold for characteristic functions outside this class. Third, we study multilinear

characteristic functions in detail; we describe a computationally efficient implementation of the Aumann-

Shapley-Shubik method and discuss practical applications to pay-per-click advertising and portfolio analysis.

1. Introduction

1.1. The Attribution Problem. Consider a function f(r1, . . . , rn) of several variables r1, . . . , rn. Given
a change in the values of these variables, we ask what portion of the overall change is due to the change in
each variable ri. In particular, we would like to divide the responsibility for the overall change among the
variables in an axiomatic way. We term such problems attribution problems and the responsibilities assigned
attributions. The attribution to the ith variable can be more interesting than simply the change si − ri in
the variable because the relationship between the magnitude of the change in a variable and the impact it
has on f depends on the form of f . For instance, a tiny change in a variable could have a huge impact on
the the value of the function.

Formally, we are given a real-valued characteristic function f : Rn → R of n variables and initial and
final values ri and si for the independent variables. Here, the function f is deterministic, not learned from
data, and the values of r and s are known exactly and are not estimates in any sense. Our objective is to
find attributions z1(r, s, f), . . . , zn(r, s, f), where we interpret zi(r, s, f) as the portion of the change in f
due to the change in the ith variable, so that z1(r, s, f) + · · · + zn(r, s, f) = f(s) − f(r), which we call the
completeness condition on the attribution. We interpret completeness as meaning that all the change in f
is accounted for. (We often omit the characteristic function and simply write zi(r, s) for zi(r, s, f).)

As we discuss attribution, we will keep the following motivating example in mind. See Section 2 for other
examples, and a broader discussion about the applicability of our techniques.

Example 1.1. Consider a firm that repeatedly procures a good from a foreign supplier for use in its
manufacturing process. It incurs some expenditure, the product e = a ·p · c of the amount a of the good that
the buyer purchases, the average cost per unit p of the good in the foreign currency, and the conversion rate
c between the foreign and local currencies. We take e(a, p, c) as the characteristic function. The final values
of e, a, p, and c may be statistics from a certain quarter, and the initial values may be statistics from the
preceding quarter. The attribution problem, then, is to divide responsibility for the change in e among the
changes in a, p, and c.

Suppose further that the demand for the good comes from the manufacturing department (so an im-
provement in the efficiency of manufacturing reduces a), that the price for the good is negotiated by the
procurement department (so an improvement in the negotiation process decreases p), and that the exchange
rate is exogenously determined. Such an attribution could then serve to apportion blame between or deter-
mine bonuses for the two departments.

How can we attribute the change in the characteristic function f to the various variables? If f were
linear, that is, if f takes the form f(r1, . . . , rn) =

∑
i biri, then for a change from r to s, it is natural to
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attribute bi · (si − ri) to the ith variable. For non-linear functions such as the one in the Example 1.1, if the
independent variables all change slightly, we could replace bi by the partial derivative with respect to ri at
s, giving a linear approximation of f locally at the final value and performing attribution as above.

However, if the changes in the variables are not slight, then this approach would badly violate complete-
ness. For instance, in Example 1.1, suppose a changes from 4 to 5, p changes from 1 to 12, and c changes from
1 to 1.5. Using this approach, the attributions to a, p, and c are (5− 4) · 12 · 1.5 = 18, 5 · (12− 1) · 1.5 = 82.5,
and 5 · 12 · (1.5 − 1) = 30, respectively. This assigns the two departments and the exogenous currency rate
change blame for a total of 18+82.5+30 = 130.5 of change; but the total change is only 5·12·1.5−4·1·1 = 86.
This means that the attribution violates completeness, making it difficult to interpret practically.

It might seem in this example that the failure of completeness originated from a poor choice of point
approximation for the partial derivative of f . In general, no systematic use of such a point approximation
suffices for our application. However, in Subsection 1.3.1, we will examine a principled method of computing
attributions along these lines.

1.2. Axioms for attribution methods. Our attribution problem (almost trivially) generalizes the cost
or surplus sharing problem from the social choice literature (cf. Moulin [16]), where the problem is to
axiomatically share the cost of production or surplus among several agents.1 The characteristic function is
either cost or surplus, the independent variables correspond to demands or contributions of agents, and the
attributions correspond to cost shares or profit shares. The completeness condition is the budget balance
condition for cost sharing. We give a more detailed discussion of the relationship between these two problems
in Subsection 1.5.

Following the cost sharing literature, we take an axiomatic approach to choosing methods to use for
attribution problems. In this section we discuss the axioms we consider and briefly discuss motivations for
them, emphasizing the attribution context; see the cited papers for a longer discussion in the cost sharing
context.

• Dummy: If the value of the characteristic function does not depend on a variable, then the attribution
to that variable is zero.
This axiom is very natural, as it simply requires that variables irrelevant to the outcome be ignored.2

• Dummy’: If the value of the characteristic function f does not depend on a variable ri on [r, s], then
the attribution zi(r, s, f) to that variable is zero.
This axiom is a natural strengthening of Dummy. It may be viewed as a local version of the global
axiom Dummy.

• Additivity: For all r, s, f1, f2, we have that zi(r, s, f1 + f2) = zi(r, s, f1) + zi(r, s, f2).
This axiom yields a type of procedural invariance. That is, if the system modeled by the characteristic
function can be decomposed into several independent sub-processes that interact additively, we can
compute the attributions separately for each sub-process. Alternatively, Additivity can be justified
via lex parsimonae. Constructing attributions is equivalent to linearizing the effect of changes in the
independent variables. When an attribution method satisfies Additivity, it is minimal in the sense
that it preserves the pre-existing linear structure of the characteristic function.

• Anonymity: The attributions are unchanged by relabeling of the variables. More formally, for any
permutation σ ∈ Sn, if fσ(r1, . . . , rn) = f(rσ−1(1), . . . , rσ−1(n)), then for all i, we have

zσ−1(i)(rσ(1), . . . , rσ(n), sσ(1), . . . , sσ(n), fσ) = zi(r, s, f).

Anonymity conveys the idea that all variables in the characteristic function should be treated equally,
up to their initial and final values.

• Conditional Nonnegativity: Suppose the characteristic function f is non-decreasing in a variable
i on [r, s]. Then for all r, s, if si ≥ ri (resp. si ≤ ri), then zi(r, s, f) ≥ 0 (resp. zi(r, s, f) ≤ 0).

• Monotonicity [9]: Suppose the characteristic function f is non-decreasing in variable j. Then, for
input pairs (r, s) and (r, s′) such that si = s′i for i 6= j and sj < s′j , we have zj(r, s, f) ≤ zj(r, s′, f).
Monotonicity, and Conditional Nonnegativity preclude attributions with counterintuitive signs.

1This is also sometimes called the fair division problem.
2In the cost sharing context, Dummy is the bedrock of the no cross-subsidy (full-responsibility) theory. In such a theory, the

variable is deemed responsible for asymmetries in the cost as well as asymmetries in the demand; see Moulin and Sprumont [17]

for a discussion.
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• Scale Invariance [9]: The attributions are independent of linear rescaling of individual variables.
That is, for any c > 0, if g(r1, . . . , rn) = f(r1, . . . , rj/c, . . . , rn), then for all i we have

zi(r, s, f) = zi

(
(r1, . . . , crj , . . . , rn), (s1, . . . , csj , . . . , sn), g

)
.

Scale Invariance conveys the idea that the attributions should be independent of the (possibly
incomparable) units in which individual variables are measured. It is especially compelling in the
context of attribution because the different variables may refer to quantities of entirely different
things.

• Affine Scale Invariance [25]: The attributions are invariant under simultaneous affine transfor-
mation of the characteristic function and the variables. That is, for any c, d > 0, if g(r1, . . . , rn) =
f(r1, . . . , (rj − d)/c, . . . , rn), then for all i we have

zi(r, s, f) = zi

(
(r1, . . . , crj + d, . . . , rn), (s1, . . . , csj + d, . . . , sn), g

)
.

Affine Scale Invariance conveys the idea that both the units and the zero point of individual
variables should not affect the value of the attribution. Again, for attribution this is especially
compelling, since the variables may represent values without naturally defined units or zero points.
For example, temperature is commonly measured in both Celsius and Fahrenheit scales, which are
related by an affine transformation.

We include the Scale Invariance and Monotonicity axioms only to facilitate discussion and comparison
with axiomatizations of attribution methods in the cost sharing literature. They will play no role in the
main results.

1.3. Candidate attribution methods. In this section we describe some attribution methods motivated
by the cost sharing literature, and mention the axioms they satisfy.

1.3.1. Path methods. We first consider a natural class of attribution methods, the path attribution methods,
that are well-studied in the cost sharing context (see [9, 11]). These methods assign to each variable its
marginal effect along some path from the initial point to the final point. They are analogous to the approach
based on partial derivatives outlined in Subsection 1.1, but they salvage completeness by integrating the
partial derivatives along a path instead of taking a naive estimate at a single endpoint. Note that their
definition is motivated by Theorem 1.7 from the cost sharing literature, which we discuss in Subsection 1.5.

Definition 1.2. For each r, s ∈ Rn, let γr,s : [0, 1]→ Rn be a C1-function with γr,s(0) = r and γr,s(1) = s,
which we interpret as a path from r to s. Write γr,s = (γr,s,1, . . . , γr,s,n), and let γr,s,i be non-decreasing if
ri ≤ si and non-increasing if ri ≥ si. Then, the attribution method given by

(1.1) zi(r, s) =

∫ 1

0

∂if(γr,s(t))γ
′
r,s,i(t)dt

is the single-path attribution method corresponding to the family of paths γr,s. If the method

zi(r, s) =
∑
j

cjz
j
i (r, s) for cj ≥ 0 and

∑
j

cj = 1

is a convex combination of single-path attribution methods zj , we say that z is a path attribution method.

For a single-path attribution method, we may check by the gradient theorem that

z1(r, s) + · · ·+ zn(r, s) =

∫ 1

0

n∑
i=1

∂if(γr,s(t))γ
′
r,s,i(t)dt =

∫
γr,s

∇ · f = f(s)− f(r),

meaning that completeness is satisfied for each single-path attribution method. Completeness is preserved
under convex combinations and therefore holds for all path attribution methods. Further, path attribution
methods satisfy Dummy, Dummy’, Additivity, and Conditional Nonnegativity for all characteristic func-
tions. That Dummy and Dummy’ hold is obvious, Additivity holds because partial differentiation is linear,
and Conditional Nonnegativity holds because a characteristic function non-decreasing in a variable has
a non-negative partial derivative with respect to that variable.

In the cost sharing context, Theorem 1.7 implies that these are essentially the only methods that satisfy
Additivity and Dummy for all characteristic functions. We suspect that an analogue of this result also holds
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in the attribution context, which guides our intuition. While none of our formal results rely on the notion of
path methods, they provide a convenient way to think about attribution methods and are a useful starting
point in our investigation of desirable attribution methods. We will now identify some specific candidate
path attribution methods, which will use the following general construction.

Definition 1.3. Fix a path γ : [0, 1] → [0, 1]n, non-decreasing in each variable, such that γ(0) = 0 and
γ(1) = (1, . . . , 1). Write γ = (γ1, . . . , γn). Then, the single-path attribution method corresponding to

γr,s(t) = r +
(

(s1 − r1)γ1(t), . . . , (sn − rn)γn(t)
)

is the affine single-path attribution method corresponding to γ. An affine path attribution method is a convex
combination of affine single-path attribution methods.

1.3.2. Methods based on the Shapley value. Recall that the Shapley value (Shapley [23]) is a solution concept
in cooperative game theory used to distribute the total surplus generated by a coalition of players among
the players. We now mention two attribution methods that are adaptations of this discrete solution concept;
both methods have been well-studied in the context of continuous demand cost sharing. We start with the
method that is arguably the best known method in the cost sharing literature.

Definition 1.4. The Aumann-Shapley method [4] is the affine single-path attribution method corresponding
to the path γi(t) = t.

This was identified by Aumann and Shapley [4] as a ‘value’ for non-atomic games. Next, we define a
different and arguably more direct generalization of the Shapley value.

Definition 1.5. The Shapley-Shubik method [9, 24] is defined as follows. For any σ ∈ Sn, let γσ be the
path

γσi (t) =


0 tn < σ(i)− 1

(tn− σ(i)) σ(i)− 1 ≤ tn < σ(i)

1 tn ≥ σ(i),

where γσ walks along edges of the hypercube [0, 1]n in an order determined by σ. Then, the Shapley-Shubik
method is given by the average of the n! path attribution methods corresponding to γσ.

More generally, a random order method [9, 21] is any convex combination of the affine path attribution
methods corresponding to the γσ. A value-variant random order method is a path attribution method such
that every path in the corresponding families of paths takes the form γσr,s.

Remark. Value-variant random order methods refine the notion of random order method in the following
sense. If we fix the initial and final values r and s, the attributions zi(r, s) of a value-variant random order
method are a convex combination of the values given by applying (1.1) for the paths γσr,s. Such a method is
a random order method if the weights of this convex combination do not depend on r and s.

The Aumann-Shapley method and value-variant random order methods (hence random order methods
and the Shapley-Shubik method) satisfy Additivity, Dummy, and Dummy’ because they are path attribution
methods. The Aumann-Shapley method and random order methods (and hence the Shapley-Shubik method)
satisfy Affine Scale Invariance by Lemma D.1 because they are affine path attribution methods. The
Aumann-Shapley and Shapley-Shubik methods additionally satisfy Anonymity.

Remark. We may relate the Shapley-Shubik method to the Aumann-Shapley method as follows. The
Shapley-Shubik attribution for a change from r to s is the expected attribution of a monotone random walk
along the edges of the hypercube with opposite vertices at r and s. If we subdivide the hypercube with
opposite vertices at r and s into a grid of smaller hypercubes and consider monotonic random walks in this
structure, the density of the resulting walks will be focused on the diagonal. Hence, when the characteristic
function satisfies some basic regularity conditions, the average of the path attribution methods corresponding
to these walks will tend to the Aumann-Shapley method in the limit.



AXIOMATIC ATTRIBUTION FOR MULTILINEAR FUNCTIONS 5

1.4. Statement of results. When choosing an attribution method, it is very desirable to have a uniqueness
result, one which says that there is exactly one method satisfying some axioms because such a result identifies
a method for use. If an attribution method is the unique method satisfying some axioms on a class of
characteristic functions, we term these axioms an axiomatization for the attribution method. We seek
axiomatizations for a specific class of characteristic functions, namely those that are a sum of a additively
separable function and a multilinear function, defined as follows.

Definition 1.6. A function f : Rn → R is additively separable if there exist fi : R→ R with

f(r1, . . . , rn) = f1(r1) + · · ·+ fn(rn).

A function f : Rn → R is multilinear if we may write f in the form

f(r1, . . . , rn) =
∑
I⊂[n]

cI
∏
i∈I

ri,

that is, as the sum of monomials of degree at most 1 in each variable.

We justify our focus on a narrow class of characteristic functions in Section 1.5.3, and we demonstrate that
such characteristic functions have several practical applications in Section 2. We defer these considerations
for now to state our results.

Our main result is that there is a unique attribution method that satisfies Dummy, Additivity, Anonymity,
Conditional Nonnegativity and Affine Scale Invariance for all characteristic functions that are the
sum of a multilinear function and an additive function (Theorem 3.4). Interestingly, Theorem 4.1 shows that
the Aumann-Shapley (Definition 1.4) and Shapley-Shubik (Definition 1.5) methods, both of which satisfy the
axioms mentioned above, coincide for these characteristic functions. We therefore term this the Aumann-
Shapley-Shubik method. We give an efficient algorithm to compute it in Theorem 4.5 and Corollary 4.6.

As an intermediate step toward proving Theorem 3.4, we show that the only methods that satisfy
Additivity, Dummy’ and Conditional Nonnegativity for all multilinear characteristic functions are value-
variant random order methods (Theorem 3.2). Surprisingly, the proof implies that every path method (a
continuous concept) is equivalent to some value-variant random order method (a combinatorial concept) for
a multilinear characteristic function.

To complete our results, we show in Theorem 4.4 that for every characteristic function outside this class,
no analog of Theorem 3.4 is possible. That is, we show that the Aumann-Shapley and the Shapley-Shubik
methods coincide if and only if the characteristic function is the sum of a multilinear and an additively
separable characteristic function. This shows that our restriction to this class of characteristic functions is
not simply a technical convenience and provides in Corollary 4.3 an axiomatization of the Aumann-Shapley-
Shubik method. Section 1.5.3 discusses further implications of this result.

1.5. Attribution versus cost sharing. In this subsection, we discuss the relationship between our attri-
bution problem and the classical cost sharing problem.

1.5.1. Cost sharing as attribution. Cost sharing models come in various flavors depending on whether the
demands are binary, integral, or real-valued and whether the cost function is homogeneous or not (see
Moulin [16] for a classification). In this sense our model resembles the rr, heterogeneous cost sharing
model (both the characteristic function and the independent variables are real-valued, and the characteristic
function is not homogeneous in the variables). More precisely, for a monotonically increasing cost function,
rr heterogeneous cost sharing is equivalent to attribution from 0 to the final demand.

There are two immediate differences between attribution and cost sharing. First, in the attribution
problem, variables change from one set of values to another, while in cost sharing there is just a single
set of demands or contributions. Secondly, attribution relaxes the requirement that the cost function be
monotone. Therefore, while negative cost shares do not make sense, negative attributions can make sense in
some contexts.

Remark. A naive approach to attribution might be to determine the attributions zi(r, s, f) as the difference
of the cost sharing problems zi(0, s, f) − zi(0, r, f). Given a valid cost sharing method, this defines a valid
attribution method. However, this approach would not reflect the behavior of the characteristic function
f between r and s, instead expressing the idea that the change in f is from r to 0 and then from 0 to s.
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More formally, Dummy’ and Affine Scale Invariance are not satisfied by this approach. This suggests that
naively applying the cost sharing framework may not be appropriate in this case.

1.5.2. Axiomatics for cost sharing. Here we discuss axiomatization results from the cost sharing literature,
both as motivation for some of our assumptions and as context for our results. We begin with a result
identifying the analogue of the path attribution methods in cost sharing as exactly those methods satisfying
the most basic of the axioms we introduced in Subsection 1.2.

Theorem 1.7 (Theorem 1 of [10]). Any cost sharing method satisfying Dummy and Additivity is a path
cost sharing method.

We now give two axiomatizations of the Aumann-Shapley and Shapley-Shubik methods in the cost sharing
context. The Aumann-Shapley method was axiomatized by Billera and Heath [5] and Mirman [15] in the
following theorem.

Theorem 1.8 ([5, 9, 15]). The Aumann-Shapley method is the unique cost sharing method that satisfies
Additivity, Dummy, Scale Invariance, and Average Cost for Homogeneous Goods, which states that,
for cost functions that are a function of the sum of the demands, the cost shares should be proportional to
the demands.

For the Shapley-Shubik method, we have the following axiomatization given by Friedman and Moulin [9].

Theorem 1.9 (Theorem 1 of [9]). Any cost sharing method satisfying Additivity, Dummy, Monotonicity,
Scale Invariance, and Continuity at Zero (cost shares are continuous in each variable near 0) is a ran-
dom order method. The Shapley-Shubik method is the unique cost sharing method that satisfies Anonymity
in addition to Additivity, Dummy, Monotonicity, Scale Invariance, and Continuity at Zero.

Remark. In the attribution context, the Aumann-Shapley and Shapley-Shubik methods satisfy the axioms
of Theorems 1.8 and 1.9, but it is not clear if the uniqueness properties continue to hold. We suspect
that these results should also carry over to the attribution framework (with very similar proofs) after some
appropriate modification.

1.5.3. Axiomatization for attribution versus axiomatization for cost sharing. Our approach to the axiomatic
study of attribution methods differs from that taken in the cost sharing literature. A typical axiomatic
result in the cost sharing literature (like Theorems 1.8 and 1.9) identifies a certain cost sharing method as
the unique method that satisfies certain axioms for all cost functions (cf. [9, 23]). This does not preclude the
existence of multiple methods that satisfy the same set of axioms for a certain subclass of cost functions. For
instance, Redekop [20] notes that the Aumann-Shapley cost sharing method satisfies the axioms mentioned
in the uniqueness result for the Shapley-Shubik method (Theorem 1.9) when the cost function has increasing
marginal costs (i.e. when the cost function is convex).3

In our model, the characteristic function is known when the attribution method is selected, so general
uniqueness results similar to Theorems 1.8 and 1.9 are not necessarily sufficient to guide the selection of an
attribution method. For instance, for a specific convex characteristic function, there might be more than
one attribution method which satisfies the axioms required in Theorems 1.8 and 1.9, meaning that they are
not enough to select a unique method; in fact, all the applications in Section 2 have convex characteristic
functions. We therefore seek and successfully identify (see Section 1.4) axiomatizations that quantify less
universally over the space of characteristic functions.

In addition, quantifying less universally over the space of characteristic functions allows us to be more
parsimonious with axioms. In the case of multilinear functions, our main result allows us to characterize the
Aumann-Shapley method without using Average Cost for Homogeneous Goods, a ‘partial domain axiom,’
which, as Friedman and Moulin [9] argue, is not very natural because it applies only to part of the space of
initial and final values.

In [18], Owen associates a multilinear function to any cooperative game so that applying the Aumann-
Shapley method to this function yields the Shapley value of the game. A generalization of these techniques
may be used to prove Corollary 3.3 for path methods. In this context, the full Corollary 3.3 may be viewed as a

3It is easy to show directly that all path attribution methods satisfying Scale Invariance are monotone for convex functions,
of which multilinear functions with positive coefficients are an instance. Redekop [20] notices this for the Aumann-Shapley

attribution method.
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generalization to the case of an arbitrary attribution method. Further, Theorem 4.4 should be of independent
interest to the cost sharing community because it identifies conditions on the characteristic function under
which two important cost sharing methods, the Aumann-Shapley and Shapley-Shubik methods, can coincide,
giving a converse to the result of [18] under slightly stronger conditions.4

1.6. Notations. We write [n] for the set {1, 2, . . . , n}. For a set of variables c1, . . . , cn and a subset I ⊂ [n],
write c for the n-tuple (c1, . . . , cn) and cI for the product

∏
i∈I ci over the indices in I. For two sets of

variables c1, . . . , cn and d1, . . . , dn, we write c < d (resp. c ≤ d) if ci < di (resp. ci ≤ di) for all i. We write
[c, d] for the closed box I1 × · · · × In, where Ii is the closed interval bounded by ci and di. We use 0 to
denote the vector (0, . . . , 0) containing all 0’s. The length of this vector will always be clear from context.
For a function f : Rn → R and a multiset of indices α, we denote by ∂αf the mixed partial derivative with
respect to the indices in α. In all cases where this construction appears, we will assume that f is chosen so
that Young’s theorem on the equality of mixed partial derivatives holds.

2. Applicability of our Model

In this section we discuss practical applications of our model. For our model to be applicable, the
characteristic function must be known, deterministic, and multilinear, and the values of the variables at the
initial and final points must be known exactly. The examples in this section satisfy these properties, and are
indicative of other settings in which our model is potentially applicable.

We begin with a few examples motivated by the Internet.

Example 2.1 (Pay-per-click advertising [28]). The characteristic function is the spend s of an advertiser,
which can be expressed as the product s = c · p of the number of clicks c that an advertiser’s advertisement
received and the average cost per click p. The final values of s, c, and p are be statistics from a certain
week, and the initial values are be statistics from the preceding week. The problem then is to identify to
what extent the advertiser’s change in spend is due to a change in the number of clicks versus a change in
the cost per click.

A more granular spend model applicable in a specific form of pay-per-click advertising called sponsored
search advertising is

fspend = q · b ·
∑
i

pi · CTRi · CPCi.

Here, q is the number of ad-views that the advertiser is eligible for, b is the probability that the ads have suf-
ficient budget to show, pi is the probability that an ad appears in the ith auction position, and (CTRi,CPCi)
are the click through rate and the cost per click for the ith auction position.5

Example 2.2 (e-Commerce website analysis). Consider an online retailer’s website. We can model the
website as a directed acyclic graph with a single sink t, which is the page displayed on a successful transaction
(see Archak et al. [3] and Immorlica et al. [13] for similar models). For every page, let sj denote the number
of times that a surfer starts on page j. For every hyperlink directed from page i to page j, let pij denote the
probability on average that a surfer follows this link given that he or she is at page i. The expected number
of successful transactions is ∑

i∈V
si

∑
P a path from i to t

∏
(r,s)∈P

prs,

which is multilinear. The initial values for the variables are average statistics for the last year, and the final
values are the same statistics for this year. The attributions to the variables {sj} and {pij} may then yield
insight into changes in traffic patterns that impact sales.

In our model, we require the characteristic function to be known and deterministic. This is in contrast
to the fields of Regression Analysis [12], where the function and the inputs are statistical quantities and
require model fitting and estimation, and structural equation modeling [6], where additionally the variables
may also require inference. Example 2.1 satisfies these conditions because the characteristic function models
a software system whose working is known and deterministic; Example 2.2 satisfies these conditions because

4We note that our proof of Theorem 4.4 does require the attribution context, however, as it relies crucially on the fact that

attributions exist between any two pairs of values.
5Recall that all major search engines place some ads based on the results of an auction.
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the characteristic function models a flow through a known graph; and Example 1.1 from the introduction
satisfies these conditions because it models a known supply chain.

Further, in both examples, we explain the change in performance of a system that occurred in the past.
Consequently, we have full-information about the initial and final values of the variables. Our model is not
explicitly set up to be predictive about the future, though the insights gained could potentially be useful to
guide future decisions. For instance, in Example 2.1, advertisers who notice that a large negative impact is
attributed to the budget variable b may choose to raise their budgets.

Remark. One advantage of attribution is that it enables the comparison of changes in unlike quantities:
For instance, in Example 2.1, the advertiser can meaningfully compare the impact of a change in the cost per
click to the impact of a change in the budget-related throttling rate (b). Such comparisons can aid decision
making. In this example, the advertiser can decide if it is more worthwhile to focus on changing budgets, or
controlling the cost per click (by changing bids in the ad auction).

While the previous examples were about explaining the change in the performance of a system, the
next example, which is motivated by investment, involves comparing the performance of a system against a
benchmark.

Example 2.3. The performance of a portfolio can be expressed as the sum∑
i∈S

ri · wi,

where ri is the return within an asset class i and wi the amount invested within this asset class. Performance
attribution [29] attempts to explain why the performance of a portfolio (the final variables) deviates from
the performance of a benchmark portfolio (the initial variables). In particular, it asks whether the deviation
in performance is due to the difference in the allocation of investments across asset classes (the attributions
to the wi’s) or to the selection of assets within an asset class (the attributions to the ri’s).

The standard way of doing performance attribution involves considering an active allocation term r1i ·
(w2

i −w1
i ), a security selection term w1

i · (r2i − r1i ), and a slack term (r2i − r1i ) · (w2
i −w1

i ) for each asset class;
the latter term is necessary for completeness, but does not yield any insight. In contrast, our approach yields
completeness automatically.

Finally, here is an example from performance analysis of basketball statistics.

Example 2.4. Suppose the coaching staff of a basketball team wants insight into the change in offensive
performance of the team from last year (the initial version of the variables) to this year (the final version
of the variables). Such studies are currently done in other frameworks as in [22] or [27]. Letting ni, mi, ai,
and pi be the number of games per season, the number of minutes per game, the number of attempts per
minute, and the field goal percentage of each player, the total number of points scored by the team is

fpoints =
∑
i

ni ·mi · ai ·
pi

100
.

Using attributions for fpoints in combination with other information can help the coaches understand and
refine the performance of the team.

We now give two remarks illustrating some advantages of our attribution approach.

Remark. A common way for humans to perform attribution relies on counterfactual intuition. For instance,
when we assert that smoking causes cancer, there is a presumption that holding all other things constant,
not smoking will reduce the chance of contracting cancer. Such counterfactual semantics have been used as
the basis for logics of causation (see Chapter 7 from Pearl [19], for instance).

Path methods (Definition 1.2) and hence all the methods we consider in this paper have a natural coun-
terfactual interpretation. Every path method considers the counterfactual of moving between the initial and
final values along the chosen family of paths. Breaking this down, we may consider a path as the limit
of piecewise linear paths which change only one independent variable at once. From this viewpoint, the
attribution to an independent variable is simply the cumulative change in the function due to this infinite
number of infinitesimal counterfactuals.
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Remark. Let us reiterate the benefit of a method satisfying Affine Scale Invariance in light of the
above examples. For many attribution problems, the units in which variables are measured are a matter of
convention and are not canonical in any sense. For instance, in pay-per-click advertising (Example 2.1), the
cost of advertising may be measured as the cost per thousand impressions or the cost per million impressions
(see [28]), and, in basketball statistics, field goal accuracy is popularly expressed as a percentage between 0
and 100 rather than an accuracy rate between 0 and 1.

In these examples, it critical that a different scaling of the units does not change the attribution. Specifying
variables can be even more difficult than this, however. Consider a characteristic function which depends
on a dimensionless physical quantity such as the Reynolds number of a chaotic fluid or the Prandtl number
of a material. Such quantities lack natural units or even canonical reference points; for them, we would like
the attribution to be invariant not only under rescaling of units but also changes of the zero points of these
units. Such changes are exactly affine transformations, leading us to the Affine Scale Invariance axiom.

We conclude this section with a discussion of the importance of applying attribution techniques carefully
to yield meaningful insights.

Remark. We return to the context of Example 2.1. Besides sponsored search advertising, another common
form of advertising is content advertising, that is, advertising on websites. Search ads commonly have a
higher cost per click (CPC) than content ads because they are typically more contextual.

Consider an advertiser who employs both forms of advertising, and who seeks to use attribution methods
to analyze the impact of a change in the CPC on the amount of money it spends on advertising. Suppose
that the situation of the advertiser is summarized by Table 1. Note that though the search CPC and the
content CPC have both doubled, the overall CPC has actually fallen because of an increase in the proportion
of clicks from content ads.

There are two possible ways to perform attribution in this situation. One way is to first compute the
change in the overall CPC and use this to perform attribution (using the Aumann-Shapley-Shubik method,
for instance). Because the overall CPC fell, we would conclude that CPC’s had a negative impact on
spend. Alternatively, if we reasoned about the impact of a change in the CPC of search ads and content ads
separately, and then aggregated the attributions, we would come up with the more meaningful conclusion that
CPC’s had a positive impact on the change in spend. Thus, aggregating the attributions is more meaningful
than attributing with aggregates in this example.

Search CPC ($) Search Clicks Content CPC ($) Content Clicks Overall CPC ($)
Initial 1 100 0.01 100 0.505
Final 2 100 0.02 10000 0.0396

Table 1. An example with mix effects.

3. Characterizations of attribution methods for multilinear functions

In this section, we seek an axiomatization for the class of multilinear functions. We focus on the class
of multilinear functions for two reasons. First, this class of functions has several applications as illustrated
in the previous section. Second, as discussed in Subsection 1.5.3, axiomatizations over a narrow family of
functions can be more meaningful than axiomatizations that quantify widely over characteristic functions.

We ignore additively separable functions for the rest of this section due to the following uniqueness result.

Lemma 3.1. On additively separable functions, there is a unique attribution method that satisfies Additivity
and Dummy.

Proof. Write an additively separable function f in the form f(r1, . . . , rn) = f1(r1) + · · · + fn(rn). By
Additivity, for all i we have

zi(r, s, f) = zi(r, s, f1) + · · ·+ zi(r, s, fn).

Now, by Dummy, zi(r, s, fj) = 0 for j 6= i, so by completeness zi(r, s, fi) = fi(si)− fi(ri), which implies that
zi(r, s, f) = fi(si)− fi(ri) is the unique attribution method on additively separable functions. �
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3.1. Methods that satisfy Additivity, Dummy’, and Conditional Nonnegativity. In this section we
characterize attribution methods that satisfy the basic axioms Additivity, Dummy’, and Conditional

Nonnegativity for multilinear characteristic functions.

Theorem 3.2. Any attribution method on multilinear functions which satisfies Additivity, Dummy’, and
Conditional Nonnegativity is a value-variant random order method.

Proof. Let V be the space of multilinear functions on x1, . . . , xn, and note that the monomials xI give a
basis of V . Fix some r, s, and let K be the set of indices k such that rk 6= sk. It will suffice to show that the
attributions given by zi(r, s,−) correspond to the attributions of some value-variant random order method
on (r, s).
Step 1: The space of attribution methods

Fix an attribution method zi satisfying Additivity, Dummy’, and Conditional Nonnegativity, and
define zi,I := zi(r, s, xI). By Lemma B.4 applied to zi, Additivity and Conditional Nonnegativity

together imply that zi(r, s,−) is linear and therefore uniquely determined by its values zi,I on the monomials
xI . By Dummy’ and completeness, we see that such zi,I satisfy

zi,I = 0 if i /∈ I,(3.1)

zi,I = 0 for i /∈ K,(3.2)

zi,I = rI−Kzi,I∩K , and(3.3) ∑
i∈I∩K

zi,I = sI − rI .(3.4)

Here, (3.1) and (3.2) follow immediately from Dummy’, (3.3) follows by noting that

zi,I − rI−Kzi,I∩K = zi(r, s, xI − rI−KxI∩K) = 0

by Additivity and Dummy’, and (3.4) follows from completeness. Values of zi,I satisfying constraints (3.1)
through (3.4) are completely determined by the values of zi,I with i ∈ I and I ⊂ K. In fact, setting k = |K|,
they form an affine subspace A′ of dimension∑

I⊂K
max{|I| − 1, 0} =

k∑
i=1

(
k

i

)
(i− 1) = k

k∑
i=1

(
k − 1

i− 1

)
− (2k − 1) = k2k−1 − 2k + 1

inside the space Z of all tuples {zi,I} with i ∈ I, I ⊂ K.
Considering Conditional Nonnegativity gives the additional constraint

(3.5)
∑
I

aIzi,I has the same sign as (si − ri) if
∑
I

aIxI is non-decreasing in ri.

Any {zi,I} satisfying (3.1) through (3.5) gives rise to a valid set of attributions on (r, s). Hence, an attribution
method satisfying Additivity, Dummy’, and Conditional Nonnegativity is characterized on the pair of
values (r, s) by the closed subspace A of A′ defined by

A :=

{
{zi,I} for i ∈ I, I ⊂ K |

∑
i∈I

zi,I = sI − rI and zi,I satisfy (3.5)

}
.

Step 2: The space of value-variant random order methods
Let us now characterize the functionals zi(r, s,−) given by value-variant random order methods. The

space of attributions on (r, s) which can result from value-variant random order methods is specified by
giving for each J ⊂ K and j ∈ J a weight cj,J so that∑

i∈I
ci,I =

∑
i/∈I

ci,I∪{i} for I 6= ∅,K,(3.6)

∑
i

ci,{i} = 1,(3.7) ∑
i

ci,K = 1, and(3.8)

cj,J ≥ 0.(3.9)
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Note here that (3.8) is implied by (3.6) and (3.7). The space of such methods is therefore the closed subset
R defined by (3.9) lying within the affine space R′ defined by (3.6) through (3.8) inside the space C of all
tuples {cj,J} with j ∈ J, J ⊂ K. Notice that R′ has dimension at least

k∑
i=1

(
k

i

)
i− (2k − 1) = k2k−1 − 2k + 1.

Step 3: Mapping from value-variant random order methods to attribution methods
We now understand the map φ : R → A between value-variant random order methods and attribution

methods; it will be induced by a linear map φ : C → Z. For I ⊂ K and i ∈ I, setting zroi,I := zroi (r, s, xI) and

I ′ = I − {i}, the map φ is given explicitly by

(3.10) zroi,I =
∑
J3i

ci,J(sI∩JrI−J − sI∩J−{i}rI−J∪{i})

=
∑
J3i

ci,JsI∩J−{i}rI−J(si − ri) =
∑

J′⊂K−{i}

ci,J′∪{i}sI′∩J′rI′−J′(si − ri).

Because value-variant random order methods are attribution methods satisfying Additivity, Dummy’, and
Conditional Nonnegativity, the resulting attributions satisfy the constraints (3.1) through (3.5).
Step 4: Checking that φ is injective

We now claim that φ is injective. By (3.10), the map φ is given by a k2k−1 × k2k−1 matrix Φ such that

• Φ is block diagonal with 2k−1 × 2k−1 blocks, and
• the ith block Φi of Φ is indexed by subsets of K − {i} and has entries

ΦiI′,J′ = (si − ri)sI′∩J′rI′−J′ ,

where I ′, J ′ ⊂ K − {i}.
We must check that Φi is non-singular for each i. For this, we claim that

det Φi =
∏
j

(sj − rj)2
k−1

.

Consider the matrices

AK := (sI∩JrI−J)I,J⊂K .

We will show by induction on k that

detAK =
∏
k∈K

(sk − rk)2
k−1

,

which obviously implies the desired. In the base case k = 1, we see that

AK =

(
1 1
r1 s1

)
and the conclusion is obvious. Now suppose the statement for some k and take some K with |K| = k + 1.
Then, pick some j ∈ K and set K ′ = K − {j}. Then, placing AK into block form, we have

det(AK) = det

(
AK′ AK′

rjAK′ sjAK′

)
= det

(
AK′ 0
rjAK′ (sj − rj)AK′

)
= (sj − rj)2

k

det(AK′)
2 =

∏
i∈K

(si − ri)2
k

,

completing the induction.
Step 5: Putting everything together

We have now shown that φ is injective as a map C → Z. Therefore, φ : R′ → A′ is an injective linear
map between affine spaces with dimR′ ≥ dimA′, hence an isomorphism of affine spaces. It remains only to
show that this isomorphism restricts to R → A; for this, we match the conditions (3.5) and (3.9) to check
that φ maps R′ −R to A′ −A.

For any {cj,J} ∈ R′ − R, choose j and J with j ∈ J ⊂ K such that cj,J < 0. For I ⊂ [n], define the
points uI and vI by

uIi =

{
ri i /∈ I
si i ∈ I

and vIi =

{
si i /∈ I
ri i ∈ I.
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By Lemma B.2, we may find a multilinear function h(x1, . . . , x̂j , . . . , xn) so that h(uIi ) = δI,J . Now, h is
linear in each xi, hence it is non-negative on [r, s] because it is non-negative on each of the vertices of [r, s].
Therefore, the multilinear function

g(x) = xjh(x1, . . . , x̂j , . . . , xn)

satisfies g(uJ)− g(uJ−{j}) = sj − rj and g(uI) = g(uI−{j}) for all I 6= J . Further, because h is non-negative
on [r, s], g is non-decreasing in xj on [r, s]. On the other hand, we see that

zroj (r, s, g) =
∑
I3j

cj,I(g(uI)− g(uI−{j})) = cj,J(g(uJ)− g(uJ−{j})) = cj,J(sj − rj),

which has opposite sign from sj − rj . This means that the image of {cj,J} ∈ R′−R under φ does not satisfy
Conditional Nonnegativity, hence lies in A′−A. Therefore, we conclude that φ maps R′−R to A′−A,
hence φ maps R bijectively to A, as needed. �

Remark. In the proof of Theorem 3.2, Conditional Nonnegativity plays two different roles. First, it
provides the technical condition that allows us to convert from Additivity to linearity by using Lemma
B.4. Secondly and more crucially, it is necessary because any value-variant random order method is a convex
combination of the attributions along the paths γσr,s rather than an affine combination. As a result, such a
method satisfies Conditional Nonnegativity.

Recall from Section 1.3.1 that path attribution methods satisfy Additivity, Dummy’, and Conditional

Nonnegativity for all characteristic functions. Therefore, for multilinear functions, Theorem 3.2 implies
that all path attribution methods are value-variant random order methods. This is somewhat surprising
because random order methods are inherently combinatorial and may be evaluated using the values of
the characteristic function at a finite set of points, while path attribution methods require in general a
continuous evaluation of the characteristic function. Thus we see that the form of the characteristic function
in Theorem 3.2 is key in reducing the latter continuous evaluation to a discrete one. See Section 4 for an
explicit illustration of this in the context of the Aumann-Shapley method.

3.2. Methods that satisfy Affine Scale Invariance. The characterization in the previous section allows
for significant freedom in the selection of an attribution method, arguably undesirably so. For instance, it
is possible to vary the convex combination over the random order paths for each r, s in some discontinuous
way. To address this issue, we impose in this subsection a continuity condition on our paths. Following
our axiomatic approach, we would like to impose this continuity condition on paths via an axiom on our
attribution methods. A natural candidate, then, is Affine Scale Invariance, as it is a continuity condition
on attributions and has a very natural interpretation in the attribution context. With the addition of Affine
Scale Invariance, we have the following.

Corollary 3.3. Any attribution method on multilinear functions satisfying Additivity, Dummy, Conditional
Nonnegativity, and Affine Scale Invariance is a random order method.

Proof. First, we claim that Dummy and Affine Scale Invariance imply Dummy’ for r, s such that ri 6= si
for any i. Suppose that a characteristic function f does not depend on the value of ri on [r, s]. We may
write

f(r1, . . . , rn) = f1(r1, . . . , r̂i, . . . , rn) + f2(r1, . . . , r̂i, . . . , rn)ri,

where f2(r1, . . . , r̂i, . . . , rn) = 0 on [r, s], which is Zariski dense in Rn, hence f2 = 0 as a polynomial. This
implies that f = f1, so the result holds by Dummy.

Now, take r∗ = (0, . . . , 0) and s∗ = (1, . . . , 1). By Theorem 3.2, we see that

zi(r
∗, s∗, f) = z∗i (r∗, s∗, f)

for some random order method z∗i . Because zi and z∗i both satisfy Affine Scale Invariance, this implies
that zi = z∗i is a random order method, as needed. �
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3.3. Main Result. The characterization in the previous section allows us to treat independent variables
asymmetrically. For instance, we could consider only a single random order path in our convex combination.
But there appears no a priori reason to treat variables asymmetrically, and so we impose Anonymity, which
gives us the following axiomatization.

Corollary 3.4. There is a unique attribution method on multilinear functions satisfying Additivity, Dummy,
Conditional Nonnegativity, Affine Scale Invariance, and Anonymity.

Proof. By Corollary 3.3, such a method must be a random order method. But there is a unique random
order method satisfying Anonymity, the Shapley-Shubik method, as needed. �

4. The Aumann-Shapley-Shubik method

Recall from Section 1.3.2 that the Aumann-Shapley method satisfies all the axioms mentioned in The-
orem 3.4 for every characteristic function, while Corollary 3.4 shows that there is a unique method that
satisfies these axioms for multilinear functions. This implies that the Aumann-Shapley method coincides
with the Shapley-Shubik method for multilinear functions. We note that a proof by direct computation is
also possible; for completeness, we show this proof in Appendix C.

Theorem 4.1. If f is the sum of a multilinear function and an additively separable function, then the
Aumann-Shapley (Definition 1.4) and Shapley-Shubik (Definition 1.5) attribution methods agree for f .

We illustrate the attributions that Aumann-Shapley and Shapley-Shubik yield on small instances of mul-
tilinear functions in the following example.

Example 4.2. For f(r1, r2) = r1r2, these methods coincide and both methods give:

z1(r, s, f) = (s1 − r1)
r2 + s2

2
and z2(r, s, f) = (s2 − r2)

r1 + s1
2

.

In particular, when r = 0, both methods correspond to an equal split. For f(r1, r2, r3) = r1r2r3, the
attributions again agree and are

z1(r, s, f) = (s1 − r1)
2r2r3 + 2s2s3 + r2s3 + s2r3

6
,

z2(r, s, f) = (s2 − r2)
2r1r3 + 2s1s3 + r1s3 + s1r3

6
, and

z3(r, s, f) = (s3 − r3)
2r1r2 + 2s1s2 + r1s2 + s1r2

6
.

We may now define the Aumann-Shapley-Shubik method for characteristic functions that are the sum of
a multilinear and an additively separable function as the method equivalent to both the Aumann-Shapley
and Shapley-Shubik methods. Summarizing the conclusions of Theorem 4.1 and Corollary 3.4, we obtain
the following axiomatic characterization of the Aumann-Shapley-Shubik method.

Corollary 4.3. For characteristic functions f which are the sum of a multilinear function and an addi-
tively separable function, the Aumann-Shapley-Shubik method is the unique method satisfying Additivity,
Dummy’, Conditional Nonnegativity, Anonymity and Affine Scale Invariance.

Remark. Corollary 3.4 and the fact that the Shapley-Shubik method satisfies Monotonicity together im-
ply that the Aumann-Shapley-Shubik method satisfies Monotonicity. Further, Sprumont and Wang [25]
show that the Shapley-Shubik method satisfies a property stronger than Affine Scale Invariance called
Ordinal Invariance, meaning that the Shapley-Shubik method is invariant under all order-preserving
(monotone) reparameterizations of the variables. Corollary 3.4 implies that this carries over to the Aumann-
Shapley-Shubik method.

4.1. When do Aumann-Shapley and Shapley-Shubik agree? Having identified the Aumann-Shapley-
Shubik method as a uniquely desirable one for characteristic functions which are the sum of a multilinear
function and an additively separable function, we now consider when it exists. As we show in the following
Theorem 4.4, this will occur only if the characteristic function f takes this form.

Theorem 4.4. If the Aumann-Shapley and Shapley-Shubik attribution methods agree for some cost function
f , then f is the sum of a multilinear function and an additively separable function.
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Proof. By Lemma B.1, it suffices for us to show that ∂iijf = 0 for distinct i, j. We first consider the case
n = 2, in which case we wish to show that ∂12f is constant. Then, for any r = (r1, r2) and s = (s1, s2) with
r ≤ s, the Aumann-Shapley attribution to the second variable is

zAS2 (r, s, f) =

∫ 1

0

∂2f(γ(t))γ′2(t)dt

with γ(t) = (1− t)r + ts. On the other hand, the Shapley-Shubik attribution is

zSS2 (r, s, f) =
1

2
[f(s1, s2)− f(s1, r2)] +

1

2
[f(r1, s2)− f(r1, r2)].

Subdivide the rectangle R with vertices at (r1, r2), (r1, s2), (s1, r2), and (s1, s2) into the triangular regions
T1 lying above the path of γ and T2 lying below the path of γ as shown in Figure 1(a) below.

(r1, r2)

(r1, s2)

(s1, r2)

(s1, s2)

T2

T1

(a) Regions T1 and T2

(r1, r2)

(r1, s2)

(s1, r2)

(s1, s2)

(b) Removing two pairs of triangles.

(r1, r2)

(r1, s2)

(s1, r2)

(s1, s2)

(c) Rectangles to apply (4.2) on.

Figure 1. Steps in the proof of Theorem 4.4

Then, by Stokes’ Theorem, we have∫
T1

∂12f(x1, x2)dx1dx2 =

∫
∂T1

∂2f(x1, x2)dx2 =

∫ 1

0

∂2f(γ(t))γ′2(t)dt− [f(r1, s2)− f(r1, r2)]

and ∫
T2

∂12f(x1, x2)dx1dx2 =

∫
∂T2

∂2f(x1, x2)dx2 = [f(s1, s2)− f(s1, r2)]−
∫ 1

0

∂2f(γ(t))γ′2(t)dt.

Because zSS2 (r, s, f) = zAS2 (r, s, f) by assumption, subtracting the two previous equations and applying our
previous computations gives that

(4.1)

∫
T1

∂12f(z1, z2)dz1dz2 =

∫
T2

∂12f(z1, z2)dz1dz2

for any choice of r, s. In particular, applying (4.1) for the pairs (r, s),
(
r, r+s2

)
, and

(
r+s
2 , s

)
and subtracting

the result of the latter two from the first, we obtain

(4.2)

∫
[r1, r1+s1

2 ]×[ r2+s2
2 ,s2]

∂12f =

∫
[ r1+s1

2 ,s1]×[r2, r2+s2
2 ]

∂12f

for all r, s. The results of this process are shown in Figure 1(b). Now, for any x = (x1, x2), set x′ = (x1,−x2).
Applying (4.2) to the pairs (r, r + 2x), (r + x′, r + x′ + 2x), . . . , (r + nx′, r + nx′ + 2x), we find that for any
n we have

(4.3)

∫
[r1,r1+x1]×[r2+x2,r2+2x2]

∂12f =

∫
[r1+(n+1)x1,r1+(n+2)x1]×[r2−nx2,r2−(n−1)x2]

∂12f.

This process is shown in Figure 1(c).
Suppose now for the sake of contradiction that ∂12f were not constant. Then, there must exist some

r < s such that ∂12f(r) 6= ∂12f(s). Suppose without loss of generality that ∂12f(r) > ∂12f(s). Because
∂12f is continuous, we may find open neighborhoods U of r and V of s such that ∂12f(x) > ∂12f(y) for
x ∈ U, y ∈ V . Now, choose x = (x1, x2) and n so that [r1, r1 + x1] × [r2 + x2, r2 + 2x2] ⊂ U and that
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[r1 + (n+ 1)x1, r1 + (n+ 2)x1]× [r2− nx2, r2− (n− 1)x2] ⊂ V , in which case (4.3) provides a contradiction.
Therefore, ∂12f is constant, which completes the proof in the case n = 2.

For the general case, choose any two variables ri and rj . Restricting to attributions between points with
all other variables held fixed, the n = 2 case tells us that ∂ijf is independent of ri and rj , which means
exactly that ∂iijf = 0 and ∂ijjf = 0. This holds for all i, j, so f takes the desired form. �

One implication of Theorem 4.4 is that we will need a different axiomatization for characteristic functions
that are not the sum of an additive and a multilinear function. Additionally, it justifies our restriction to
sums of multilinear and additive characteristic functions.

Remark. The proof of Theorem 4.4 relied heavily on Stokes’ theorem. In fact, this approach works more
generally to compare general path attribution methods; we summarize the idea briefly here. Consider a
single-path attribution method corresponding to a family of paths γr,s. Letting Ir,s be the (closed) image of
γr,s in [r, s], we see that the attributions are given by

(4.4) zi(r, s) =

∫ 1

0

∂if(γr,s(t))γ
′
r,s,i(t)dt =

∫
Ir,s

∂if(r)dri,

where we view ∂if(r) dri as a differential form on Ir,s. From this perspective, it is clear that zi(r, s) depends
only on the underlying set Ir,s of the path and not on the choice of parametrization γr,s.

We can now use this viewpoint to compare methods. Consider the case n = 2. Let γ1r,s and γ2r,s be two
families of paths and consider the corresponding single-path attribution methods. If these methods coincide
for some characteristic function f , then for all r, s, we have for all i that

zi(r, s, f) =

∫
I1r,s

∂ifdri =

∫
I2r,s

∂ifdri,

where I1r,s and I2r,s are the images in [r, s] of γ1r,s and γ2r,s, respectively. Suppose for simplicity that the closed

curve formed by first traversing γ1r,s and then traversing γ2r,s is not self-intersecting. Then, it bounds an
open set Ar,s in [r, s]. From (4.4), we then find that

(4.5) 0 =

∫
I1r,s

∂2fdr2 −
∫
I2r,s

∂2fdr2 =

∫
Ar,s

∂12fdr1dr2,

where the final equality follows from Stokes’ Theorem. We have therefore translated condition (4.4) involving
line integrals to condition (4.5) involving area integrals. In the situation of Theorem 4.4, this condition is
(4.1), which we may analyze by elementary means because T1 and T2 are geometrically quite simple. The
general case seems to require different techniques; some ongoing work in this direction by the authors uses
an approach involving tools from wavelet theory.

4.2. Computing Aumann-Shapley-Shubik. In this subsection, we discuss the efficient computation of
the Aumann-Shapley-Shubik method for multilinear functions.6 As discussed at the end of Subsection 3.1,
if f is a multilinear function, then this method is computable in finite time because it coincides with the
Shapley-Shubik method. Indeed, the attributions given by the Shapley-Shubik method are the average of the
marginal impact of changing a variable over the finite number of possible variable orderings. However, there
does not always exist an efficient (polynomial time) algorithm to compute the Shapley-Shubik attributions
(see the hardness results in [8, 14]).

Now, for f(r) = r1 · · · · ·rn, the most basic example of a multilinear function, the Aumann-Shapley-Shubik
attributions zi(r, s, f) are computable in finite time, as to compute the Shapley-Shubik attributions in this
case it suffices to evaluate f a finite number of times. In principle, this may involve Θ(2n) evaluations,
one for each of the vertices of [r, s]. However, Theorem 4.5 below implies that in this case we may compute
attributions in time quadratic in the number of variables. If we instead consider general multilinear functions,
iterating the algorithm of Theorem 4.5 in Corollary 4.6 yields runtime quadratic in the number of variables
and linear in the number of non-zero monomials in the characteristic function. These two results together
ensure that our attribution theory is not impractical for computational reasons.

6We ignore additively separable functions because the attribution assigned to a variable is simply the change in the function

in which it appears.
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Theorem 4.5. Let f(r) = r1 · · · rn. Then, for any r, s and each i, the Aumann-Shapley-Shubik attribution
zi(r, s, f) is computable in O(n2) time and O(n) memory.

Proof. From the calculations in the computational proof of Theorem 4.1 given in Appendix C, the attributions
are given by

zi(r, s, f) =
1

n!
(si − ri)

∑
K⊂[n]−{i}

|K|!(n− 1− |K|)!sKr[n]−{i}−K

=
1

n!
(si − ri)

n−1∑
k=0

k!(n− 1− k)!
∑

K⊂[n]−{i}
|K|=k

sKr[n]−{i}−K ,

so it suffices to compute this value. The computation is invariant under relabeling of coordinates, so we may
assume for convenience of notation that i = n. In this case, we have

zn(r, s, f) =
1

n!
(sn − rn)

n−1∑
k=0

k!(n− 1− k)!
∑

K⊂[n−1]
|K|=k

sKr[n−1]−K .

Our approach is to compute the sums

Xk,m :=
∑

K⊂[m]
|K|=k

sKr[m]−K

for m ≤ n−1 and 0 ≤ k ≤ m using dynamic programming. Computing zi(r, s, f) then requires only a simple
summation. Algorithm 1 formalizes this idea.

Algorithm 1 Computing the Aumann-Shapley-Shubik attribution zn(r, s, f).

X0,0 ← 1
for m = 1 to n− 1 do
X0,m ← rm ·X0,m−1
for k = 1 to m− 1 do
Xk,m ← sm ·Xk−1,m−1 + rm ·Xk,m−1

end for
Xm,m ← sm ·Xm−1,m−1

end for
return 1

n! (sn − rn)
∑n−1
k=0 k!(n− 1− k)! ·Xk,n−1

The correctness of Algorithm 1 follows from the evident recursion

Xk,m =


rm ·X0,m−1 k = 0

sm ·Xk−1,m−1 + rm ·Xk,m−1 1 ≤ k ≤ m− 1

sm ·Xm−1,m−1 k = m

and the expression for zi(r, s, f) obtained at the beginning of the proof. There are O(n2) iterations of the
loop, each taking O(1) time to update Xk,m, giving a total runtime of O(n2). Further, at each step, only
the values of Xk,m for 0 ≤ k ≤ m and Xk,m−1 for 0 ≤ k ≤ m − 1 are required; storing only these yields a
memory requirement of O(n). �

Corollary 4.6. Let f be a multilinear characteristic function in n variables with N non-zero monomial
terms. Then, the Aumann-Shapley-Shubik attribution zi(r, s, f) is computable in O(n2 ·N) time and O(n)
memory.

Proof. By Additivity and Dummy, we may simply run the algorithm of Theorem 4.5 N times, once for each
non-zero monomial in f , and sum the resulting contributions. This trivially gives the desired runtime and
memory costs. �
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Appendix A. A review of Stokes’ theorem

In this appendix, we give a brief intuitive introduction to Stokes’ theorem as it relates to our paper for
the unfamiliar reader. To minimize technical difficulties, we restrict ourselves to the case of dimension two,
where Stoke’s Theorem coincides with Green’s Theorem, and suppress technical assumptions. First, we state
a basic version of the theorem.

Theorem A.1 (Stokes’ Theorem). Let A be the region enclosed by a smooth closed curve in the plane. Let
f be a differentiable function defined on an open neighborhood of A, and let ∂A be the (oriented) boundary
of A. Then, we have

(A.1)

∫
∂A

fdx2 =

∫
A

∂1fdx1dx2.

Let us explain intuitively the meaning of Theorem A.1. It relates the path integral of the 1-dimensional
differential form fdx1 along the boundary ∂A of A to the double integral of its exterior derivative d(fdx1) =
∂2fdx1dx2 on the interior of A. We may visualize this in Figure 2 below.
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x1

x2

A

∂A

Figure 2. A region A and its boundary ∂A in Stokes’ theorem.

It may be instructive to consider an analogy between Stokes’ theorem and the fundamental theorem of
calculus (which is actually Stokes’ theorem in dimension 1). For a differentiable function F , the fundamental
theorem of calculus relates the integral of F ′(x) along an interval to the difference in values of F on the
endpoints of this interval. That is, it states that

F (b)− F (a) =

∫ b

a

F ′(x)dx.

Stokes’ theorem generalizes the fundamental theorem of calculus in the sense that it replaces the concept of
an interval with a simple region, and the endpoints of the interval (which form its boundary) with the closed
curve that forms the boundary of the region. Its proof is also ultimately an application of the fundamental
theorem of calculus. We refer the interested reader to Chapter 11 of [2] or to [26] for more detailed expositions
of Stokes’ theorem, which also appears in various engineering applications such as electrostatics and fluid
dynamics.

In this paper, Stokes’ theorem is particularly convenient because it allows manipulation of line integrals of
1-dimensional differential forms. We see that the attributions given by path attribution methods take exactly
this form for differential forms involving the characteristic function. Applying Stokes’ theorem now yields
conditions on the area integral of a mixed partial which we use as a starting point for further considerations.

Appendix B. Technical results on multilinear functions

In this appendix we state and prove some technical results about multilinear functions which are used
in our proofs. We begin with an alternate characterization of functions which are the sum of a multilinear
function and an additively separable function.

Lemma B.1. A function f : Rn → R is the sum of a multilinear function and an additively separable
function if and only if ∂iijf = 0 for all i 6= j.

Proof. It is obvious that the sum of a multilinear function and an additively separable function has this
property, so it remains to show the converse. We proceed by induction on n, with the base case n = 1 trivial.
Now, if n > 1, we may write ∂11f = g1 as a function of q1 only, hence we see that

∂1f(r) =

∫ r1

0

g1(t)dt+ h(r)

and

f(r) =

∫ r1

0

∫ t2

0

g1(t1)dt1dt2 + r1h(r) + p(r),

where ∂1h = ∂1p = 0. It remains to show that h is multilinear and that p is the sum of a multilinear function
and an additively separable function. Now, for any distinct i, j 6= 1, we have that

0 = ∂iijf = r1∂iijh+ ∂iijp,

so taking r1 = 0 shows that ∂iijp = 0. Hence p is the sum of a multilinear function and an additively
separable function by the inductive hypothesis. Now, notice that for i 6= 1, we have

0 = ∂ii1f = ∂iih,

so h is multilinear. This completes the induction. �
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Remark. The condition in Lemma B.1 is a mixture of the conditions for f to be multilinear (∂iif = 0) and
to be additively separable (∂ij = 0).

Now, fix r, s ∈ Rn. Our next two results provide alternate bases for the space of multilinear functions
which will be convenient in analyzing their restriction to the vertices of [r, s]. For I ⊂ [n], define the points
uI and vI by

uIi =

{
ri i /∈ I
si i ∈ I

and vIi =

{
si i /∈ I
ri i ∈ I.

Notice that uI = v[n]−I and that the vertices of [r, s] are exactly the points uI as I ranges over the subsets
of [n]. We then have the following two characterizations of multilinear functions.

Lemma B.2. For any r, s ∈ Rn with ri 6= si for all i, there exists for any I ⊂ [n] a multilinear function gI
such that gI(u

J) = δI,J .

Proof. Define gI by

gI(x) =

∏
i∈I(xi − vIi )∏
i∈I(u

I
i − vIi )

.

For any I 6= J , there is some i ∈ K such that uIi = vJi , meaning that gI(u
J) = 0 for I 6= J . But gI(u

I) = 1
by definition, so this gI has the desired properties. �

Lemma B.3. For any r, s ∈ Rn and any xj , there is a basis {fα} of the space of multilinear functions such
that fα is non-decreasing in xj on [r, s].

Proof. It suffices to consider the case where ri 6= si for all i, as otherwise we may pick r′, s′ with [r, s] ⊂ [r′, s′]
and r′i 6= s′i for all i. Further, we may assume that ri ≤ si for all i, as otherwise we may simply exchange ri
and si. Now, for J ⊂ [n]− {j}, consider the multilinear functions

gJ∪{j} and gJ∪{j} + gJ

given by Lemma B.2. It is clear that these form a basis for the space of all multilinear functions because
{gI}I⊂[n] does. Further, notice that

∂jgJ∪{j} and ∂j(gJ∪{j} + gJ)

are multilinear functions in x1, . . . , x̂j , . . . , xn which are non-negative on all vertices of [r, s], hence non-
negative on [r, s]. Therefore, they give the desired basis for the space of multilinear functions consisting of
functions non-decreasing in xj on [r, s]. �

The existence of the basis of Lemma B.3 allows us to convert Additivity to linearity as follows.

Lemma B.4. Fix r, s ∈ Rn and a variable xj , and let φ be an additive functional on the space of multilinear
functions. If φ(f) ≥ 0 for f non-decreasing in xj on [r, s], then φ is linear.

Proof. Let {fα} be the basis given by Lemma B.3. By additivity, it suffices to check that φ is linear on
span(fα) for each α. But φ(cfα) ≥ 0 for any c ≥ 0, hence φ is additive and non-decreasing on span(fα).
It is therefore linear on span(fα) as a monotone solution to the Cauchy functional equation (see [1] or the
original paper of [7]). �

Appendix C. Proof of Theorem 4.1

In this appendix, we give a computational proof of Theorem 4.1, which was omitted from the main text
to streamline the exposition. First we need a technical lemma.

Lemma C.1. For non-negative integers i, j, we have∫ 1

0

xi(1− x)jdx =
1

(i+ j + 1)
(
i+j
i

)dx.
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Proof. We induct on i. For i = 0, the result is clear. Now, suppose that the result holds for some i− 1. In
this case, integration by parts gives that∫ 1

0

xi(1− x)jdx =

[
1

j + 1
xi(1− x)j+1

]1
0

+

∫ 1

0

ixi−1
1

j + 1
(1− x)j+1dx

=
i

j + 1

∫ 1

0

xi−1(1− x)j+1dx

=
i

j + 1

1

(i+ j + 1)
(
i+j
i−1
)

=
1

(i+ j + 1)
(
i+j
i

)
which completes the proof. �

Proof of Theorem 4.1. By Additivity, it is enough to consider f(r) = ri1ri2 · · · rik , since Lemma 3.1 shows
that the two methods agree for additively separable functions. Further, if f(r) does not depend on the value
of ri, then the attribution to variable ri is 0 by Dummy, so in fact it is enough to consider f(r) = r1 · · · · · rn.

In this case, recall that the Aumann-Shapley method is the affine path attribution method for γi(t) = t,
so the attributions are given by

zASi (r, s) =

∫ 1

0

∂if(γr,s(t))γ
′
r,s,i(t)dt

=

∫ 1

0

(si − ri)
∏
j 6=i

[rj + (sj − rj)γj(t)] γ′i(t)dt

= (si − ri)
∫ 1

0

γ′i(t)
∑

K⊂[n]−{i}

∏
j∈K

rj
∏

j∈[n]−{i}−K

(sj − rj)γj(t)dt

= (si − ri)
∫ 1

0

γ′i(t)
∑

J⊂[n]−{i}

∏
j∈J

sj
∏

j∈[n]−J−{i}

rj
∑

J⊂K⊂[n]−{i}

(−1)|K|−|J|
∏
j∈K

γj(t)dt

= (si − ri)
∑

J⊂[n]−{i}

∏
j∈J

sj
∏

j∈[n]−J−{i}

rj

∫ 1

0

γ′i(t)
∏
j∈J

γj(t)
∏

j∈[n]−J−{i}

(1− γj(t))dt,

which is of the form

zASi (r, s) = (si − ri)
∑

J⊂[n]−{i}

ci,J
∏
j∈J

sj
∏

j∈[n]−J−{i}

rj

for the constants

ci,J =

∫ 1

0

γ′i(t)
∏
j∈J

γj(t)
∏

j∈[n]−J−{i}

(1− γj(t))dt =

∫ 1

0

t|J|(1− t)n−1−|J|dt.

On the other hand, each affine path attribution method for γσ assigns to variable i the attribution

zσi (r, s) = (si − ri)
∏

σ(j)<σ(i)

rj
∏

σ(j)>σ(i)

sj .

Therefore, the attribution assigned to variable i under Shapley-Shubik is

zSSi =
1

n!
(si − ri)

∑
σ∈Sn

∏
σ(j)<σ(i)

rj
∏

σ(j)>σ(i)

sj =
1

n!
(si − ri)

∑
J⊂[n]−{i}

|J |!(n− 1− |J |)!
∏
j∈J

sJ
∏

j∈[n]−{i}−J

rj ,

so it suffices for us to show that∫ 1

0

t|J|(1− t)n−1−|J|dt =
|J |!(n− 1− |J |)!

n!
,

which follows by taking i = |J | and j = n− 1− |J | in Lemma C.1. �
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Appendix D. Affine path attribution methods

The Aumann-Shapley and the Shapley-Shubik methods are both affine path attribution methods. The
following lemma demonstrates why they satisfy Affine Scale Invariance.

Lemma D.1. Every affine path attribution method satisfies Affine Scale Invariance.

Proof. Let zi be the affine single-path attribution method corresponding to γ. For any c, d > 0, set
g(r1, . . . , rn) = f(r1, . . . , (rj − d)/c, . . . , rn), r′ = (r1, . . . , crj + d, . . . , rn), and s′ = (s1, . . . , csj + d, . . . , sn).
Then, taking τij(c) = c if i = j and τij(c) = 1 otherwise, we have

zi

(
r′, s′, g

)
=

∫ 1

0

∂ig
(
r′ +

(
(s1 − r1)γ1(t), . . . , c(sj − rj)γj(t), . . . , (sn − rn)γn(t)

))
(si − ri)τij(c)γ′i(t) dt

=

∫ 1

0

1

τij(c)
∂if(γr,s(t)) (si − ri) τij(c) γ′i(t) dt

=

∫ 1

0

∂if(γr,s(t))γ
′
r,s,i(t) dt

= zi(r, s, f).

The result follows because Affine Scale Invariance is preserved under convex combinations. �
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