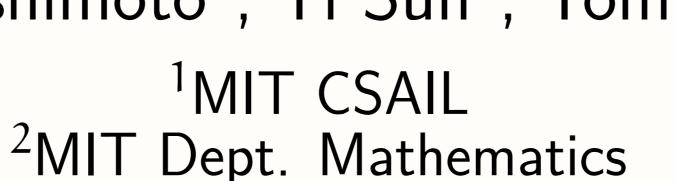
Metric recovery from directed unweighted graphs

Tatsunori B. Hashimoto¹, Yi Sun², Tommi S. Jaakkola¹



Summary

- Obtain directed unweighted graph from $x_i \in \mathbb{R}^d \text{ with edge } i \to j \text{ with probability} \\ p_{ij} = h(|x_i x_j| \epsilon(x_i)^{-1}).$
- We can recover the radius function $\varepsilon(x_i)$ and density $p(x_i)$ given the graph and d.
- We show consistent recovery is possible up to isometric scaling if the vertex degree is $\omega(n^{2/(2+d)}\log(n)^{d/(d+2)}).$

Problem setup

We consider the following construction:

- p(x): given probability density in \mathbb{R}^d .
- $\mathcal{X} = \{x_1, x_2, \ldots\}$: latent coordinate points drawn independently from p(x).
- $\varepsilon_n(x_i)$: radius function (may depend on \mathcal{X}).
- $h(d_{ij})$: connectivity kernel mapping $\mathbb{R}^+ \to [0,1) \text{ such that } \int_0^1 h(r) r^{d-1} dr > 0$ and h(r)=0 for r>1
- $G_n = (\mathcal{X}_n, E_n)$: unweighted directed graph with vertices $\mathcal{X}_n = \{x_1, \dots, x_n\}$ and edge $i \to j$ with probability $h(|x_i x_j| \varepsilon^{-1}(x_i))$

Fix a large \mathfrak{n} . We consider the random directed graph model given by observing $G_{\mathfrak{n}}$. Under the assumptions (\star) specified below, we solve:

Problem: Problem statement Given G_n and d, form a consistent estimate of $p(x_i)$ and $|x_i - x_j|$ up to proportionality.

We make the following assumptions:

Definition: Assumption (*)

- The density p(x) is differentiable with $\nabla \log(p(x))$ bounded on a connected compact domain $D \subset \mathbb{R}^d$ with smooth boundary ∂D .
- There is a deterministic continuous function $\overline{\epsilon}(x)>0$ on \overline{D} and scaling constants g_n with

 $g_n \to 0$ and $g_n n^{\frac{1}{d+2}} \log(n)^{-\frac{1}{d+2}} \to \infty$ so that a.s. in the draw of \mathcal{X} , $g_n^{-1} \varepsilon_n(x)$ converges uniformly to $\overline{\varepsilon}(x)$.

• The rescaled density functions $n\pi_{X_n}(x)$ are a.s. uniformly equicontinuous.

Some special cases are the following:

Definition: Special cases

- k-nearest neighbor graphs
- ε -ball proximity graph
- Gaussian affinity: $p_{ij} = exp(-d_{ij}\sigma)$
- Annulus: $p_{ij} = 1$ iff $a < d_{ij} < b$

Theoretical results

We consider:

- $X_n(t)$: the simple random walk on G_n .
- $\pi_{X_n}(x)$: the stationary density of $X_n(t)$.

Our main result shows $\pi_{X_n}(x)$ converges to an explicit function of p(x) and $\overline{\epsilon}(x)$. Combining with an estimate on the out-degree of points in G_n allows us to recover density and scale. Let V_d be the volume of the unit d-ball and $NB_n(x)$ the neighbors of x in G_n .

Theorem: Main result

Given (*), a.s. in \mathcal{X} , we have

$$n\pi_{X_n}(x) \to c \frac{p(x)}{\overline{\epsilon}(x)^2},$$

for
$$c^{-1} = \int p(x)^2 \overline{\epsilon}(x)^{-2} dx$$
.

Corollary: Density estimates

Assuming (\star) , we have a.s. in $\mathcal X$ that

$$\begin{split} &\left(\frac{n^{\frac{d-2}{d}}}{cV_d^{2/d}g_n^2}\right)^{\frac{d}{d+2}}|\mathsf{NB}_n(x)|^{\frac{2}{d+2}}\pi_{X_n}(x)^{\frac{d}{d+2}} \to \mathfrak{p}(x);\\ &\left(\frac{1}{c^{d/2}V_dn^2g_n^d}\right)^{\frac{1}{d+2}}|\mathsf{NB}_n(x)|^{\frac{1}{d+2}}\pi_{X_n}(x)^{-\frac{1}{d+2}} \to \overline{\epsilon}(x). \end{split}$$

The main results follow by proving that the process $X_n(t)$ converges to an Itô process:

Theorem: Continuum limit of the walk Under (\star) , as $n \to \infty$ a.s. in the draw of \mathcal{X} the process $X_n(\lfloor t/h_n \rfloor)$ converges in $D([0,\infty),\overline{D})$ to the isotropic \overline{D} -valued Itô process Y(t) with reflecting boundary condition defined by

$$dY(t) = \frac{\nabla p(Y(t))}{3p(Y(t))} \overline{\varepsilon}(Y(t))^2 dt + \frac{\overline{\varepsilon}(Y(t))}{\sqrt{3}} dW(t).$$

Empirical Results

Near perfect reconstruction

We demonstrate near-perfect reconstruction performance on simulated data. Our estimator is nearly indistinguishable from the naive metric ball estimator and substantially outperforms prior work of [1].

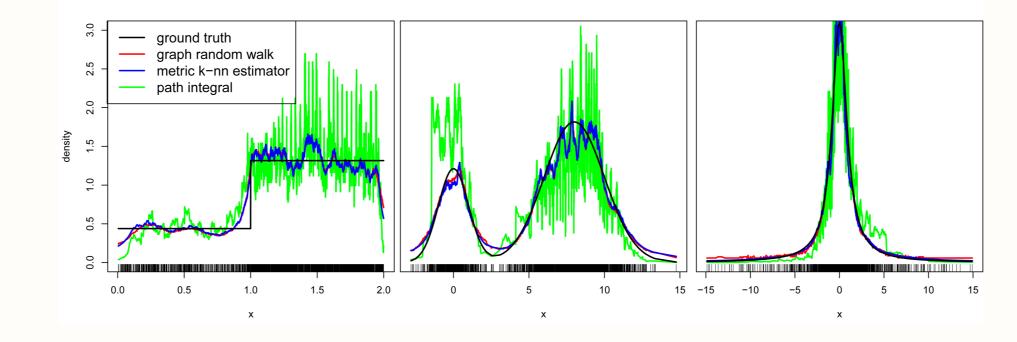


Figure: (red) = our method; (green) = path integral [1]; (blue) = metric k-nearest neighbor; (black) = ground truth

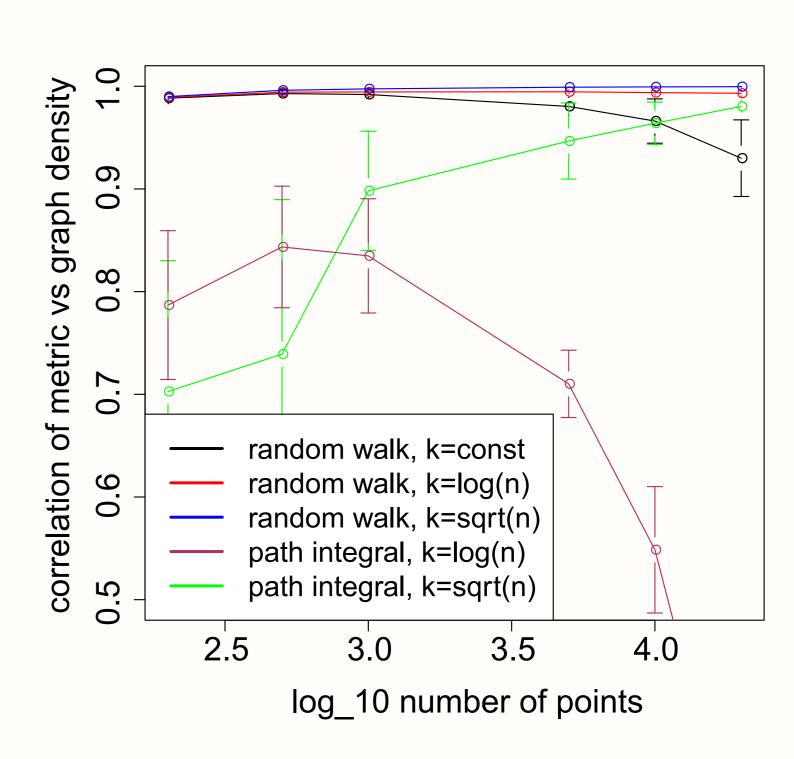


Figure: Accuracy vs sample and neighborhood size. (red, blue, black) = our estimator; (green, maroon) = path integral of [1].

Amazon co-purchasing data

We demonstrate useful embeddings on the Amazon co-purchasing dataset:

- edge from item $i \to j$ if item i is listed as purchased together often with j;
- density estimates correspond to sales rank;
- embedding reproduces product categories.

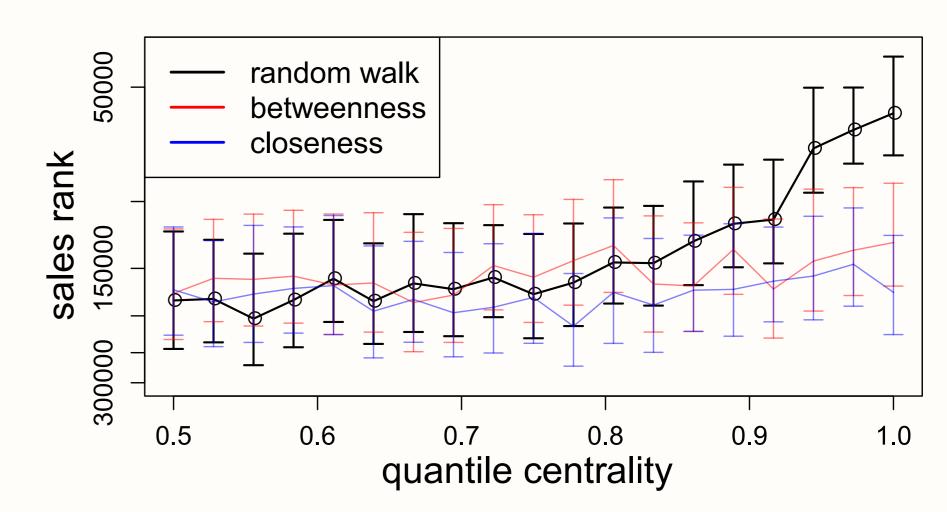


Figure: Density estimates in the graph correlate well with sales rank, unlike other measures of centrality.

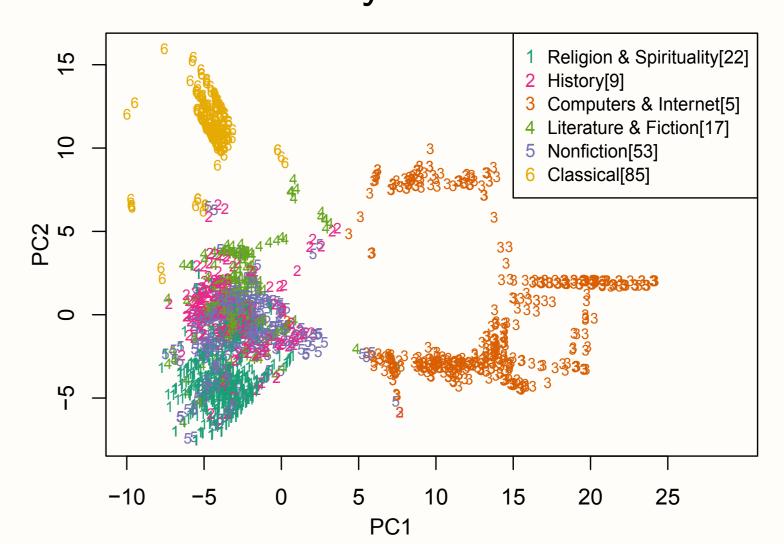


Figure: Embeddings from estimated distances recover separation between different product categories.

References

[1] U. Von Luxburg and M. Alamgir. Density estimation from unweighted k-nearest neighbor graphs: a roadmap. NIPS 2013.